SEARCH

SEARCH BY CITATION

Keywords:

  • epithelial to mesenchymal transition (EMT);
  • integrin-linked kinase (ILK);
  • E-cadherin;
  • Snail;
  • Poly(ADP-ribose)polymerase (PARP);
  • cancer

Abstract

Repression of E-cadherin expression by the transcription factor, Snail, is implicated in epithelial to mesenchymal transition and cancer progression. We show here that Integrin-Linked Kinase (ILK) regulates E-cadherin expression through Poly(ADP-ribose) polymerase-1 (PARP-1). ILK overexpression in Scp2 cells resulted in stimulation of Snail expression and loss of E-cadherin expression. Silencing of ILK, Akt or Snail resulted in re-expression of E-cadherin in PC3 cells. To elucidate the signaling pathway downstream of ILK, we identified candidate Snail promoter ILK Responsive Element (SIRE) binding proteins. PARP-1 was identified as a SIRE-binding protein. ILK silencing inhibited binding of PARP-1 to SIRE. PARP-1 silencing resulted in inhibition of Snail and ZEB1, leading to up-regulation of E-cadherin. We suggest a model in which ILK represses E-cadherin expression by regulating PARP-1, leading to the binding of PARP-1 to SIRE and modulation of Snail expression. Developmental Dynamics 237:2737–2747, 2008. © 2008 Wiley-Liss, Inc.