Knockdown of the neuronal nitric oxide synthase gene retard the development of the cerebellar granule neurons in vitro



The role of endogenous neuronal nitric oxide synthase (nNOS) gene in the development of cerebellar granule neurons (CGNs) is conflicting. Here, we tested the effect of antisense oligos (AS-ODN) on the endogenous nNOS gene and the development of the CGNs in vitro. The expression of nNOS increased in a development-dependent pattern both in terms of mRNA and protein. AS-ODN down-regulated nNOS gene, but in a posttranscriptional manner. Knockdown of nNOS protein decreased the viability of the CGNs from 7 to 13 days in culture (DIC). This activity of AS-ODN was mimicked by nNOS inhibitor I. The antagonist (nNOSi, MK-801, or ODQ) -induced decrease of cell viability was normalized by the provision of the sodium nitroprusside, an NO donor. This study provides direct evidence that endogenous nNOS, mainly by means of its principal product NO, plays an active role in sustaining the survival of developing CGNs at transition from differentiation to maturation. Developmental Dynamics 239:474–481, 2010. © 2009 Wiley-Liss, Inc.