• chick;
  • cell death;
  • embryo;
  • lateral motor column;
  • mRNA


During embryogenesis, limb-innervating lateral motor column (LMC) spinal motor neurons (MN) are generated in excess and subsequently nearly half of them die. Many motor neuron survival factors (MnSFs) have been shown to suppress this default programmed cell death (PCD) program through their receptors (MnSFRs), raising the possibility that they are involved in matching specific MNs with their target muscles. Published observations suggest a combinatorial model of MnSF/Rs function, which assumes that during the PCD phase, MNs are expressing combinations of MnSFRs, whereas the limb muscles innervated by these MNs express cognate combinations of MnSFs. We tested this model by expression profiling of MnSFs and their receptors in the avian lumbosacral spinal cord and limb muscles during the peak PCD period. Our findings highlight the complexity of MnSF/Rs function in the control of LMC motor neuron survival. Developmental Dynamics 239:965–979, 2010. © 2010 Wiley-Liss, Inc.