• Open Access

Dermoskeleton morphogenesis in zebrafish fins

Authors

  • Manuel Marí-Beffa,

    Corresponding author
    1. Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Málaga, and Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
    • Av. Louis Pasteur s/n, 29071-Málaga
    Search for more papers by this author
  • Carmen Murciano

    1. Department of Cell Biology, Genetics and Physiology, Faculty of Science, University of Málaga, and Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Málaga, Spain
    Search for more papers by this author

Abstract

Zebrafish fins have a proximal skeleton of endochondral bones and a distal skeleton of dermal bones. Recent experimental and genetic studies are discovering mechanisms to control fin skeleton morphogenesis. Whereas the endochondral skeleton has been extensively studied, the formation of the dermal skeleton requires further revision. The shape of the dermal skeleton of the fin is generated in its distal growing margin and along a proximal growing domain. In these positions, dermoskeletal fin morphogenesis can be explained by intertissue interactions and the function of several genetic pathways. These pathways regulate patterning, size, and cell differentiation along three axes. Finally, a common genetic control of late development, regeneration, and tissue homeostasis of the fin dermoskeleton is currently being analyzed. These pathways may be responsible for the similar shape obtained after each morphogenetic process. This provides an interesting conceptual framework for future studies on this topic. Developmental Dynamics 239:2779–2794, 2010. © 2010 Wiley-Liss, Inc.

Ancillary