SEARCH

SEARCH BY CITATION

REFERENCES

  • Allen BL, Rapraeger AC. 2003. Spatial and temporal expression of heparan sulfate in mouse development regulates FGF and FGF receptor assembly. J Cell Biol 163: 637648.
  • Arvatz G, Barash U, Nativ O, Ilan N, Vlodavsky I. 2010. Post-transcriptional regulation of heparanase gene expression by a 3′ AU-rich element. FASEB J 24: 49694976.
  • Atkinson-Leadbeater K, Bertolesi GE, Hehr CL, Webber CA, Cechmanek PB, McFarlane S. 2010. Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J Neurosci 30: 685693.
  • Bellaiche Y, The I, Perrimon N. 1998. Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394: 8588.
  • Bertolesi GE, Michaiel G, McFarlane S. 2008. Two heparanase splicing variants with distinct properties are necessary in early Xenopus development. J Biol Chem 283: 1600416016.
  • Binari RC, Staveley BE, Johnson WA, Godavarti R, Sasisekharan R, Manoukian AS. 1997. Genetic evidence that heparin-like glycosaminoglycans are involved in wingless signaling. Development 124: 26232632.
  • Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R. 2004. Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131: 19271938.
  • Brickman MC, Gerhart JC. 1994. Heparitinase inhibition of mesoderm induction and gastrulation in Xenopus laevis embryos. Dev Biol 164: 484501.
  • Cao Y, Siegel D, Knochel W. 2006. Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation. Mech Dev 123: 614625.
  • Cao Y, Siegel D, Oswald F, Knochel W. 2008. Oct25 represses transcription of nodal/activin target genes by interaction with signal transducers during Xenopus gastrulation. J Biol Chem 283: 3416834177.
  • Casu B, Lindahl U. 2001. Structure and biological interactions of heparin and heparan sulfate. Adv Carbohydr Chem Biochem 57: 159206.
  • Chen L, Sanderson RD. 2009. Heparanase regulates levels of syndecan-1 in the nucleus. PLoS One 4: e4947.
  • Davis CA, Holmyard DP, Millen KJ, Joyner AL. 1991. Examining pattern formation in mouse, chicken and frog embryos with an En-specific antiserum. Development 111: 287298.
  • de Mestre AM, Khachigian LM, Santiago FS, Staykova MA, Hulett MD. 2003. Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J Biol Chem 278: 5037750385.
  • de Mestre AM, Staykova MA, Hornby JR, Willenborg DO, Hulett MD. 2007. Expression of the heparan sulfate-degrading enzyme heparanase is induced in infiltrating CD4+ T cells in experimental autoimmune encephalomyelitis and regulated at the level of transcription by early growth response gene 1. J Leukoc Biol 82: 12891300.
  • Dong J, Kukula AK, Toyoshima M, Nakajima M. 2000. Genomic organization and chromosome localization of the newly identified human heparanase gene. Gene 253: 171178.
  • Galli A, Roure A, Zeller R, Dono R. 2003. Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos. Development 130: 49194929.
  • Gimlich RL, Gerhart JC. 1984. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev Biol 104: 117130.
  • Gingis-Velitski S, Zetser A, Flugelman MY, Vlodavsky I, Ilan N. 2004. Heparanase induces endothelial cell migration via protein kinase B/Akt activation. J Biol Chem 279: 2353623541.
  • Goldshmidt O, Zcharia E, Aingorn H, Guatta-Rangini Z, Atzmon R, Michal I, Pecker I, Mitrani E, Vlodavsky I. 2001. Expression pattern and secretion of human and chicken heparanase are determined by their signal peptide sequence. J Biol Chem 276: 2917829187.
  • Goldshmidt O, Zcharia E, Cohen M, Aingorn H, Cohen I, Nadav L, Katz BZ, Geiger B, Vlodavsky I. 2003. Heparanase mediates cell adhesion independent of its enzymatic activity. FASEB J 17: 10151025.
  • Guerardel Y, Kol O, Maes E, Lefebvre T, Boilly B, Davril M, Strecker G. 2000. O-glycan variability of egg-jelly mucins from Xenopus laevis: characterization of four phenotypes that differ by the terminal glycosylation of their mucins. Biochem J 352( pt 2): 449463.
  • Haimov-Kochman R, Prus D, Zcharia E, Goldman-Wohl DS, Natanson-Yaron S, Greenfield C, Anteby EY, Reich R, Orly J, Tsafriri A, Hurwitz A, Vlodavsky I, Yagel S. 2005. Spatiotemporal expression of heparanase during human and rodent ovarian folliculogenesis. Biol Reprod 73: 2028.
  • Hedrick JL, Nishihara T. 1991. Structure and function of the extracellular matrix of anuran eggs. J Electron Microsc Tech 17: 319335.
  • Hinkley CS, Martin JF, Leibham D, Perry M. 1992. Sequential expression of multiple POU proteins during amphibian early development. Mol Cell Biol 12: 638649.
  • Hocking JC, Hehr CL, Bertolesi GE, Wu JY, McFarlane S. 2010. Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells. Mech Dev 127: 3648.
  • Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, Parish CR. 1999. Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 5: 803809.
  • Itoh K, Sokol SY. 1994. Heparan sulfate proteoglycans are required for mesoderm formation in Xenopus embryos. Development 120: 27032711.
  • Jiang P, Kumar A, Parrillo JE, Dempsey LA, Platt JL, Prinz RA, Xu X. 2002. Cloning and characterization of the human heparanase-1 (HPR1) gene promoter: role of GA-binding protein and Sp1 in regulating HPR1 basal promoter activity. J Biol Chem 277: 89898998.
  • Johnson KG, Ghose A, Epstein E, Lincecum J, O'Connor MB, Van Vactor D. 2004. Axonal heparan sulfate proteoglycans regulate the distribution and efficiency of the repellent slit during midline axon guidance. Curr Biol 14: 499504.
  • Kreuger J, Spillmann D, Li JP, Lindahl U. 2006. Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174: 323327.
  • Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N. 2003. Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308: 885891.
  • Lin X, Buff EM, Perrimon N, Michelson AM. 1999. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126: 37153723.
  • McKenzie E, Young K, Hircock M, Bennett J, Bhaman M, Felix R, Turner P, Stamps A, McMillan D, Saville G, Ng S, Mason S, Snell D, Schofield D, Gong H, Townsend R, Gallagher J, Page M, Parekh R, Stubberfield C. 2003. Biochemical characterization of the active heterodimer form of human heparanase (Hpa1) protein expressed in insect cells. Biochem J 373: 423435.
  • Nasser NJ, Avivi A, Shushy M, Vlodavsky I, Nevo E. 2007. Cloning, expression, and characterization of an alternatively spliced variant of human heparanase. Biochem Biophys Res Commun 354: 3338.
  • Newport J, Kirschner M. 1982. A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage. Cell 30: 675686.
  • Nieuwkoop PD, Faber J. 1994. Normal table of Xenopus laevis (Daudin). New York: Garland Science.
  • Pudney M, Varma MG, Leake CJ. 1973. Establishment of a cell line (XTC-2) from the South African clawed toad, Xenopus laevis. Experientia 29: 466467.
  • Rafferty KA, Jr., Sherwin RW. 1969. The length of secondary chromosomal constrictions in normal individuals and in a nucleolar mutant of Xenopus laevis. Cytogenetics 8: 427438.
  • Revel A, Helman A, Koler M, Shushan A, Goldshmidt O, Zcharia E, Aingorn H, Vlodavsky I. 2005. Heparanase improves mouse embryo implantation. Fertil Steril 83: 580586.
  • Schonemann MD, Ryan AK, Erkman L, McEvilly RJ, Bermingham J, Rosenfeld MG. 1998. POU domain factors in neural development. Adv Exp Med Biol 449: 3953.
  • Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O. 2004. Human heparanase nuclear localization and enzymatic activity. Lab Invest 84: 535544.
  • Sotnikov I, Hershkoviz R, Grabovsky V, Ilan N, Cahalon L, Vlodavsky I, Alon R, Lider O. 2004. Enzymatically quiescent heparanase augments T cell interactions with VCAM-1 and extracellular matrix components under versatile dynamic contexts. J Immunol 172: 51855193.
  • Takebayashi-Suzuki K, Arita N, Murasaki E, Suzuki A. 2007. The Xenopus POU class V transcription factor XOct-25 inhibits ectodermal competence to respond to bone morphogenetic protein-mediated embryonic induction. Mech Dev 124: 840855.
  • Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, Pecker I. 1999. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5: 793802.
  • Walz A, McFarlane S, Brickman YG, Nurcombe V, Bartlett PF, Holt CE. 1997. Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development 124: 24212430.
  • Wolf M, Lommes P, Sock E, Reiprich S, Friedrich RP, Kriesch J, Stolt CC, Bermingham JR Jr, Wegner M. 2009. Replacement of related POU transcription factors leads to severe defects in mouse forebrain development. Dev Biol 332: 418428.
  • Yost HJ. 1992. Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature 357: 158161.
  • Zcharia E, Metzger S, Chajek-Shaul T, Aingorn H, Elkin M, Friedmann Y, Weinstein T, Li JP, Lindahl U, Vlodavsky I. 2004. Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18: 252263.
  • Zcharia E, Zilka R, Yaar A, Yacoby-Zeevi O, Zetser A, Metzger S, Sarid R, Naggi A, Casu B, Ilan N, Vlodavsky I, Abramovitch R. 2005. Heparanase accelerates wound angiogenesis and wound healing in mouse and rat models. FASEB J 19: 211221.
  • Zcharia E, Jia J, Zhang X, Baraz L, Lindahl U, Peretz T, Vlodavsky I, Li JP. 2009. Newly generated heparanase knock-out mice unravel co-regulation of heparanase and matrix metalloproteinases. PLoS One 4: e5181.
  • Zetser A, Bashenko Y, Miao HQ, Vlodavsky I, Ilan N. 2003. Heparanase affects adhesive and tumorigenic potential of human glioma cells. Cancer Res 63: 77337741.
  • Zong F, Fthenou E, Wolmer N, Hollosi P, Kovalszky I, Szilak L, Mogler C, Nilsonne G, Tzanakakis G, Dobra K. 2009. Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells. PLoS One 4: e7346.