SEARCH

SEARCH BY CITATION

REFERENCES

  • Blythe SA, Cha SW, Tadjuidje E, Heasman J, Klein PS. 2010. beta-Catenin primes organizer gene expression by recruiting a histone H3 arginine 8 methyltransferase, Prmt2. Dev Cell 19:220231.
  • Boyes J, Byfield P, Nakatani Y, Ogryzko V. 1998. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396:594598.
  • Ciau-Uitz A, Liu F, Patient R. 2010. Genetic control of hematopoietic development in Xenopus and zebrafish. Int J Dev Biol 54:11391149.
  • Ciau-Uitz A, Walmsley M, Patient R. 2000. Distinct origins of adult and embryonic blood in Xenopus. Cell 102:787796.
  • Cunliffe VT. 2004. Histone deacetylase 1 is required to repress Notch target gene expression during zebrafish neurogenesis and to maintain the production of motoneurones in response to hedgehog signalling. Development 131:29832995.
  • Farooq M, Sulochana KN, Pan X, To J, Sheng D, Gong Z, Ge R. 2008. Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish. Dev Biol 317:336353.
  • Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ. 2011. Effect of inhibiting histone deacetylase with short-chain carboxylic acids and their hydroxamic acid analogs on vertebrate development and neuronal chromatin. ACS Med Chem Lett 2:3942.
  • Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T. 2001. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:69696978.
  • Gurvich N, Tsygankova OM, Meinkoth JL, Klein PS. 2004. Histone deacetylase is a target of valproic acid-mediated cellular differentiation. Cancer Res 64:10791086.
  • Gurvich N, Berman MG, Wittner BS, Gentleman RC, Klein PS, Green JB. 2005. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J 19:11661168.
  • Haberland M, Mokalled MH, Montgomery RL, Olson EN. 2009a. Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 23:16251630.
  • Haberland M, Montgomery RL, Olson EN. 2009b. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet 10:3242.
  • Harland RM. 1991. In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol 36:685695.
  • Hemmati-Brivanlou A, Thomsen GH. 1995. Ventral mesodermal patterning in Xenopus embryos: expression patterns and activities of BMP-2 and BMP-4. Dev Genet 17:7889.
  • Hernandez-Hernandez A, Ray P, Litos G, Ciro M, Ottolenghi S, Beug H, Boyes J. 2006. Acetylation and MAPK phosphorylation cooperate to regulate the degradation of active GATA-1. EMBO J 25:32643274.
  • Huber TL, Zhou Y, Mead PE, Zon LI. 1998. Cooperative effects of growth factors involved in the induction of hematopoietic mesoderm. Blood 92:41284137.
  • Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, de Jong-van den Berg LT. 2010. Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med 362:21852193.
  • Kook H, Lepore JJ, Gitler AD, Lu MM, Wing-Man Yung W, Mackay J, Zhou R, Ferrari V, Gruber P, Epstein JA. 2003. Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 112:863871.
  • Kumano G, Belluzzi L, Smith WC. 1999. Spatial and temporal properties of ventral blood island induction in Xenopus laevis. Development 126:53275337.
  • Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C. 2002. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:26722681.
  • Lamonica JM, Vakoc CR, Blobel GA. 2006. Acetylation of GATA-1 is required for chromatin occupancy. Blood 108:37363738.
  • Li X, Jia S, Wang S, Wang Y, Meng A. 2009. Mta3-NuRD complex is a master regulator for initiation of primitive hematopoiesis in vertebrate embryos. Blood 114:54645472.
  • Lieschke GJ, Oates AC, Paw BH, Thompson MA, Hall NE, Ward AC, Ho RK, Zon LI, Layton JE. 2002. Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. Dev Biol 246:274295.
  • Maéno M, Ong RC, Kung H-f. 1992. Positive and negative regulation of the differentiation of ventral mesoderm for erythrocytes in Xenopus laevis. Development 34:567577.
  • Maéno M, Ong RC, Xue Y, Nishimatsu S, Ueno N, Kung HF. 1994. Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue. Dev Biol 161:522529.
  • Maéno M, Mead PE, Kelley C, Xu RH, Kung HF, Suzuki A, Ueno N, Zon LI. 1996. The role of BMP-4 and GATA-2 in the induction and differentiation of hematopoietic mesoderm in Xenopus laevis. Blood 88:19651972.
  • Menegola E, Broccia ML, Nau H, Prati M, Ricolfi R, Giavini E. 1996. Teratogenic effects of sodium valproate in mice and rats at midgestation and at term. Teratog Carcinog Mutagen 16:97108.
  • Methot JL, Chakravarty PK, Chenard M, Close J, Cruz JC, Dahlberg WK, Fleming J, Hamblett CL, Hamill JE, Harrington P, Harsch A, Heidebrecht R, Hughes B, Jung J, Kenific CM, Kral AM, Meinke PT, Middleton RE, Ozerova N, Sloman DL, Stanton MG, Szewczak AA, Tyagarajan S, Witter DJ, Secrist JP, Miller TA. 2008. Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1:2). Bioorg Med Chem Lett 18:973978.
  • Miccio A, Wang Y, Hong W, Gregory GD, Wang H, Yu X, Choi JK, Shelat S, Tong W, Poncz M, Blobel GA. 2009. NuRD mediates activating and repressive functions of GATA-1 and FOG-1 during blood development. EMBO J 29:442456.
  • Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN. 2007. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:17901802.
  • Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel-Duby R, Olson EN. 2008. Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118:35883597.
  • Narotsky MG, Francis EZ, Kavlock RJ. 1994. Developmental toxicity and structure-activity relationships of aliphatic acids, including dose-response assessment of valproic acid in mice and rats. Fundam Appl Toxicol 22:251265.
  • Nau H, Hauck RS, Ehlers K. 1991. Valproic acid-induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol Toxicol 69:310321.
  • Nieuwkoop, Faber. 1994. Normal table of Xenopus laevis. New York, NY: Garland Publishing Inc.
  • Nusinzon I, Horvath CM. 2005. Histone deacetylases as transcriptional activators? Role reversal in inducible gene regulation. Sci STKE 2005:re11.
  • Paik EJ, Zon LI. Hematopoietic development in the zebrafish. Int J Dev Biol 54:11271137.
  • Palis J, Koniski A. 2005. Analysis of hematopoietic progenitors in the mouse embryo. Methods Mol Med 105:289302.
  • Palis J, McGrath KE, Kingsley PD. 1995. Initiation of hematopoiesis and vasculogenesis in murine yolk sac explants. Blood 86:156163.
  • Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS. 2001. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276:3673436741.
  • Pillai R, Coverdale LE, Dubey G, Martin CC. 2004. Histone deacetylase 1 (HDAC-1) required for the normal formation of craniofacial cartilage and pectoral fins of the zebrafish. Dev Dyn 231:647654.
  • Sadlon TJ, Lewis ID, D'Andrea RJ. 2004. BMP4: its role in development of the hematopoietic system and potential as a hematopoietic growth factor. Stem Cells 22:457474.
  • Shibata K, Ishimura A, Maéno M. 1998. GATA-1 inhibits the formation of notochord and neural tissue in Xenopus embryo. Biochem Biophys Res Commun 252:241248.
  • Sive HL, Granger RM, Harland RM. 2000. Early development of Xenopus laevis: a laboratory manual. Cold Springs Harbor, NY: Cold Springs Harbor Laboratory Press.
  • Smith SJ, Kotecha S, Towers N, Latinkic BV, Mohun TJ. 2002. XPOX2-peroxidase expression and the XLURP-1 promoter reveal the site of embryonic myeloid cell development in Xenopus. Mech Dev 117:173186.
  • Snyder A, Fraser ST, Baron MH. 2004. Bone morphogenetic proteins in vertebrate hematopoietic development. J Cell Biochem 93:224232.
  • Taneyhill LA, Adams MS. 2008. Investigating regulatory factors and their DNA binding affinities through real time quantitative PCR (RT-QPCR) and chromatin immunoprecipitation (ChIP) assays. Methods Cell Biol 87:367389.
  • Tracey WD Jr, Pepling ME, Horb ME, Thomsen GH, Gergen JP. 1998. A Xenopus homologue of aml-1 reveals unexpected patterning mechanisms leading to the formation of embryonic blood. Development 125:13711380.
  • Turpen JB. 1998. Induction and early development of the hematopoietic and immune systems in Xenopus. Dev Comp Immunol 22:265278.
  • Walmsley M, Ciau-Uitz A, Patient R. 2002. Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus. Development 129:56835695.
  • Walmsley M, Cleaver D, Patient R. 2008. Fibroblast growth factor controls the timing of Scl, Lmo2, and Runx1 expression during embryonic blood development. Blood 111:11571166.
  • Xu RH, Kim J, Taira M, Lin JJ, Zhang CH, Sredni D, Evans T, Kung HF. 1997. Differential regulation of neurogenesis by the two Xenopus GATA-1 genes. Mol Cell Biol 17:436443.
  • Yamaguchi M, Tonou-Fujimori N, Komori A, Maeda R, Nojima Y, Li H, Okamoto H, Masai I. 2005. Histone deacetylase 1 regulates retinal neurogenesis in zebrafish by suppressing Wnt and Notch signaling pathways. Development 132:30273043.
  • Yang J, Tan C, Darken RS, Wilson PA, Klein PS. 2002. Beta-catenin/Tcf-regulated transcription prior to the midblastula transition. Development 129:57435752.
  • Zhang C, Evans T. 1996. BMP-like signals are required after the midblastula transition for blood cell development. Dev Genet 18:267278.