SEARCH

SEARCH BY CITATION

References

  • Alcorn, S. M., T. V. Orum, A. G. Steigerwalt, J. L. M. Foster, J. C. Fogleman, and D. J. Brenner. 1991. Taxonomy and pathogenicity of Erwinia cacticida sp. nov. Int. J. Syst. Bacteriol. 41:197212.
  • Avent, T. D., T. A. R. Price, and N. Wedell. 2008. Age-based female preference in the fruit fly Drosophila pseudoobscura. Anim. Behav. 75:14131421.
  • Brazner, J. C. 1983. The influence of rearing environment on sexual isolation between populations of Drosophila mojavensis: an alternative to the character displacement hypothesis. MS thesis. Syracuse University, Syracuse.
  • Brazner, J. C., and W. J. Etges. 1993. Pre-mating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. II. Effects of larval substrates on time to copulation, mate choice, and mating propensity. Evol. Ecol. 7:605624.
  • Chenoweth, S. F., and M. W. Blows. 2005. Contrasting mutual sexual selection on homologous signal traits in Drosophila serrata. Am. Nat. 165:281289.
  • Coyne, J. A., and B. Charlesworth. 1997. Genetics of a pheromonal difference affecting sexual isolation between Drosophila mauritiana and D. sechellia. Genetics 145:10151030.
  • Dallerac, R., C. Labeur, J. M. Jallon, D. C. Knipple, W. L. Roelofs, and C. Wicker-Thomas. 2000. A delta 9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 97:94499454.
  • Dopman, E. B., S. M. Bogdanowicz, and R. G. Harrison. 2004. Genetic mapping of sexual isolation between E and Z pheromone strains of the European corn borer (Ostrinia nubilalis). Genetics 167:301309.
  • Etges, W. J. 1989. Divergence in cactophilic Drosophila: the evolutionary significance of adult ethanol metabolism. Evolution 43:13161319.
  • Etges, W. J. 1990. Direction of life history evolution in Drosophila mojavensis. Pp. 3756 in J. S. F. Barker, W. T. Starmer and R. J. MacIntyre, eds. Ecological and evolutionary genetics of Drosophila. Plenum, New York.
  • Etges, W. J. 1992. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. Evolution 46:19451950.
  • Etges, W. J. 2002. Divergence in mate choice systems: does evolution play by rules? Genetica 116:151166.
  • Etges, W. J., and M. A. Ahrens. 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. V. Deep geographic variation in epicuticular hydrocarbons among isolated populations. Am. Nat. 158:585598.
  • Etges, W. J., and W. B. Heed. 1992. Remating effects on the genetic structure of female life histories in populations of Drosophila mojavensis. Heredity 68:515528.
  • Etges, W. J., and L. L. Jackson. 2001. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VI. Epicuticular hydrocarbon variation in Drosophila mojavensis cluster species. J. Chem. Ecol. 27:21252149.
  • Etges, W. J., and C. S. Klassen. 1989. Influences of atmospheric ethanol on adult Drosophila mojavensis: altered metabolic rates and increases in fitness among populations. Physiol. Zool. 62:170193.
  • Etges, W. J., and A. D. Tripodi. 2008. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. VIII. Mating success mediated by epicuticular hydrocarbons within and between isolated populations. J. Evol. Biol. 21:16411652.
  • Etges, W. J., C. C. de Oliveira, M. G. Ritchie, and M. A. F. Noor. 2009. Genetics of incipient speciation in Drosophila mojavensis. II. Host plants and mating status influence cuticular hydrocarbon QTL expression and G x E interactions. Evolution 63:17121730.
  • Etges, W. J., C. C. de Oliveira, M. A. F. Noor, and M. G. Ritchie. 2010. Genetics of incipient speciation in Drosophila mojavensis. III. Life history divergence and reproductive isolation. Evolution 64:35493569.
  • Everaerts, C., J.-P. Farine, M. Cobb, and J.-F. Ferveur. 2010. Drosophila cuticular hydrocarbons revisited: mating status alters cuticular profiles. PLoS ONE 5:e9607.
  • Fedina, T. Y., T.-H. Kuo, K. Dreisewerd, H. A. Dierick, J. Y. Yew, and S. D. Pletcher. 2012. Dietary effects on cuticular hydrocarbons and sexual attractiveness in Drosophila. PLoS ONE 7:e49799.
  • Ganter, P. F., F. Peris, and W. T. Starmer. 1989. Adult life span of cactophilic Drosophila. Interactions among volatiles and yeasts. Am. Midl. Nat. 121:331340.
  • Gibbs, A., and J. G. Pomonis. 1995. Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation. Comp Biochem Physiol B 112:243249.
  • Gibbs, A. G., and S. Rajpurohit. 2010. Water-proofing properties of cuticular lipids. Pp. 100120 in G. J. Blomquist, A. G. Bagneres, eds. Insect lipids; biology, biochemistry and chemical biology. Cambridge Univ. Press, New York.
  • Gibbs, A. G., A. K. Louie, and J. A. Ayala. 1998. Effects of temperature on cuticular lipids and water balance in a desert Drosophila: is thermal acclimation beneficial? J. Exp. Biol. 201:7180.
  • Gibbs, A. G., F. Fukuzato, and L. M. Matzkin. 2003a. Evolution of water conservation mechanisms in desert Drosophila. J. Exp. Biol. 206:11831192.
  • Gibbs, A. G., M. C. Perkins, and T. A. Markow. 2003b. No place to hide: microclimates of Sonoran Desert Drosophila. J. Therm. Biol 28:353362.
  • Gleason, J. M., J.-M. Jallon, J.-D. Rouault, and M. G. Ritchie. 2005. Quantitative trait loci for cuticular hydrocarbons associated with sexual isolation between Drosophila simulans and D. sechellia. Genetics 171:17891798.
  • Grace, T., S. M. Wisely, S. J. Brown, F. E. Dowell, and A. Joern. 2010. Divergent host plant adaptation drives the evolution of sexual isolation in the grasshopper Hesperotettix viridis (Orthoptera: Acrididae) in the absence of reinforcement. Biol. J. Linn. Soc. 100:866878.
  • Greenspan, R. J., and J.-F. Ferveur. 2000. Courtship in Drosophila. Annu. Rev. Genet. 34:205232.
  • Havens, J. A., and W. J. Etges. 2013. Premating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. IX. Host plant and population specific epicuticular hydrocarbon expression influences mate choice and sexual selection. J. Evol. Biol. 26:562576.
  • Havens, J. A., S. H. Orzack, and W. J. Etges. 2011. Mate choice opportunity leads to shorter offspring development time in a desert insect. J. Evol. Biol. 24:13171324.
  • Heed, W. B. 1982. The origin of Drosophila in the Sonoran Desert. Pp. 6580 in J. S. F. Barker and W. T. Starmer, eds. Ecological genetics and evolution: the cactus-yeast-Drosophila model system. Academic Press, Sydney.
  • Hine, E., S. F. Chenoweth, M. W. Blows, and T. Day. 2004. Multivariate quantitative genetics and the lek paradox: genetic variance in male sexually selected traits of Drosophila serrata under field conditions. Evolution 58:27542762.
  • Howard, R. W., and G. J. Blomquist. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50:371393.
  • Ishii, K., Y. Hirai, C. Katagiri, and M. T. Kimura. 2001. Sexual isolation and cuticular hydrocarbons in Drosophila elegans. Heredity 87:392399.
  • Jackson, L. L., and R. J. Bartelt. 1986. Cuticular hydrocarbons of Drosophila virilis. Comparison by sex and age. Insect Biochem. 16:433439.
  • Jaureguy, L. M., and W. J. Etges. 2007. Assessing patterns of senescence in Drosophila mojavensis reared on different host cacti. Evol. Ecol. Res. 9:91107.
  • Johnston, J. S., and J. R. Ellison. 1982. Exact age-determination in laboratory and field-caught Drosophila. J. Insect Physiol. 28:773779.
  • Johnston, J. S., and A. R. Templeton. 1982. Dispersal and clines in Opuntia breeding Drosophila mercatorum and D. hydei at Kamueia, Hawaii. Pp. 241256 in J. S. F. Barker, W. T. Starmer, eds. Ecological genetics and evolution: the cactus-yeast-Drosophila model system Academic Press, Sydney.
  • Kent, C., R. Azanchi, B. Smith, A. Formosa, and J. D. Levine. 2008. Social context influences chemical communication in D. melanogaster males. Curr. Biol. 18:13841389.
  • Krupp, J. J., C. Kent, J.-C. Billeter, R. Azanchi, A. K. C. So, J. A. Schonfeld, et al. 2008. Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr. Biol. 18:13731383.
  • Kühbandner, S., K. Hacker, S. Niedermayer, J. L. M. Steidle, and J. Ruther. 2012. Composition of cuticular lipids in the pteromalid wasp Lariophagus distinguendus is host dependent. Bull. Entomol. Res. 102:610617.
  • Kuo, T.-H., T. Y. Fedina, I. Hansen, K. Dreisewerd, H. A. Dierick, J. Y. Yew, et al. 2012a. Insulin signaling mediates sexual attractiveness in Drosophila. PLoS Genet. 8:e1002684.
  • Kuo, T.-H., J. Y. Yew, T. Y. Fedina, K. Dreisewerd, H. A. Dierick, and S. D. Pletcher. 2012b. Aging modulates cuticular hydrocarbons and sexual attractiveness in Drosophila melanogaster. J. Exp. Biol. 215:814821.
  • Liang, D., and J. Silverman. 2000. “You are what you eat”: diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften 87:412416.
  • Markow, T. A. 1982. Mating systems of cactophilic Drosophila. Pp. 273287 in J. S. F. Barker and W. T. Starmer, eds. Ecological genetics and evolution: the cactus-yeast-Drosophila model system. Academic Press, Sydney.
  • Oliveira, C., M. Manfrin, F. Sene, L. Jackson, and W. Etges. 2011. Variations on a theme: diversification of cuticular hydrocarbons in a clade of cactophilic Drosophila. BMC Evol. Biol. 11:179.
  • Page, M., L. J. Nelson, G. J. Blomquist, and S. J. Seybold. 1997. Cuticular hydrocarbons as chemotaxonomic characters of pine engraver beetles (Ips spp.) in the grandicollis subgeneric group. J. Chem. Ecol. 23:10531099.
  • Peterson, M. A., S. Dobler, E. L. Larson, D. Juárez, T. Schlarbaum, K. J. Monsen, et al. 2007. Profiles of cuticular hydrocarbons mediate male mate choice and sexual isolation between hybridizing Chrysochus (Coleoptera: Chrysomelidae). Chemoecology 17:8796.
  • Pitnick, S., T. A. Markow, and G. S. Spicer. 1995. Delayed male maturity is a cost of producing large sperm in Drosophila. Proc. Natl Acad. Sci. USA 92:1061410618.
  • Rajpurohit, S., C. C. Oliveira, W. J. Etges, and A. G. Gibbs. 2013. Functional genomic and phenotypic responses to desiccation in natural populations of a desert drosophilid. Mol. Ecol. 22:26982715.
  • Robson, S. K. A., M. Vickers, M. W. Blows, and R. H. Crozier. 2006. Age determination in individual wild-caught Drosophila serrata using pteridine concentration. J. Exp. Biol. 209:31553163.
  • Rosewell, J., and B. Shorrocks. 1987. The implication of survival rates in natural populations of Drosophila: capture-recapture experiments on domestic species. Biol. J. Linn. Soc. 32:373384.
  • Rouault, J.-D., C. Marican, C. Wicker-Thomas, and J.-M. Jallon. 2004. Relations between cuticular hydrocarbon (HC) polymorphism, resistance against desiccation and breeding temperature; A model for HC evolution in D. melanogaster and D. simulans. Genetica 120:195212.
  • Ruiz, A., and W. B. Heed. 1988. Host-plant specificity in the cactophilic Drosophila mulleri species complex. J. Anim. Ecol. 57:237249.
  • Rundle, H. D., S. F. Chenoweth, P. Doughty, and M. W. Blows. 2005. Divergent selection and the evolution of signal traits and mating preferences. PLoS Biol. 3:19881995.
  • SAS-Institute. 2004. SAS/STAT 9.1.2. SAS Institute, Inc., Cary, NC.
  • Savarit, F., and J.-F. Ferveur. 2002. Temperature affects the ontogeny of sexually dimorphic cuticular hydrocarbons in Drosophila melanogaster. J. Exp. Biol. 205:32413249.
  • Schal, C., V. L. Sevala, H. P. Young, and J. A. S. Bachmann. 1998. Sites of synthesis and transport pathways of insect hydrocarbons: cuticle and ovary as target tissues. Am. Zool. 38:382393.
  • Schwander, T., D. Arbuthnott, R. Gries, G. Gries, P. Nosil, and B. Crespi. 2013. Hydrocarbon divergence and reproductive isolation in Timema stick insects. BMC Evol. Biol. 13:151.
  • Singer, T. L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38:394405.
  • Smith, G., K. Lohse, W. J. Etges, and M. G. Ritchie. 2012. Model-based comparisons of phylogeographic scenarios resolve the intraspecific divergence of cactophilic Drosophila mojavensis. Mol. Ecol. 21:32933307.
  • Stennett, M. D., and W. J. Etges. 1997. Pre-mating isolation is determined by larval rearing substrates in cactophilic Drosophila mojavensis. III. Epicuticular hydrocarbon variation is determined by use of different host plants in Drosophila mojavensis and Drosophila arizonae. J. Chem. Ecol. 23:28032824.
  • Thomas, M. L., and L. W. Simmons. 2011. Short-term phenotypic plasticity in long-chain cuticular hydrocarbons. Proc. Biol. Sci. 278:31233128.
  • Tinghitella, R. M., E. G. Weigel, M. Head, and J. W. Boughman. 2013. Flexible mate choice when mates are rare and time is short. Ecol. Evol. 3:28202831.
  • Toolson, E. C. 1978. Diffusion of water through the arthropod cuticle: thermodynamic consideration of the transition phenomenon. J. Therm. Biol 3:6973.
  • Toolson, E. C. 1982. Effects of rearing temperature on cuticle permeability and epicuticular lipid composition in Drosophila pseudoobscura. J. Exp. Zool. 222:249253.
  • Toolson, E. C., and R. Kuper-Simbron. 1989. Laboratory evolution of epicuticular hydrocarbon composition and cuticular permeability in Drosophila pseudoobscura: effects of sexual dimorphism and thermal-acclimation ability. Evolution 43:468472.
  • Toolson, E. C., T. A. Markow, L. L. Jackson, and R. W. Howard. 1990. Epicuticular hydrocarbon composition of wild and laboratory-reared Drosophila mojavensis Patterson and Crow (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 83:11651176.
  • Yew, J. Y., K. Dreisewerd, C. C. de Oliveira, and W. J. Etges. 2011. Male-specific transfer and fine scale spatial differences of newly identified cuticular hydrocarbons and triacylglycerides in a Drosophila species pair. PLoS ONE 6:e16898.