SEARCH

SEARCH BY CITATION

References

  • Allan, J., and M. M. Castillo. 2009. Stream ecology: structure and function of running waters. 2nd ed. Springer Press, The Netherlands .
  • Ardren, W. R., and A. R. Kapuscinski. 2003. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol. Ecol. 12:3549.
  • Banks, P. B., and C. R. Dickman. 2000. Effects of winter food supplementation on reproduction, body mass, and numbers of small mammals in montane Australia. Can. J. Zool. 78:17751783.
  • Blanchfield, P. J., and M. S. Ridgway. 1997. Reproductive timing and use of redd sites by lake-spawning brook trout (Salvelinus fontinalis). Can. J. Fish. Aquat. Sci. 54:747756.
  • Blanchfield, P. J., and M. S. Ridgway. 2005. The relative influence of breeding competition and habitat quality on female reproductive success in lacustrine brook trout (Salvelinus fontinalis). Can. J. Fish. Aquat. Sci. 62:26942705.
  • Blanchfield, P. J., M. S. Ridgway, and C. C. Wilson. 2003. Breeding success of male brook trout (Salvelinus fontinalis) in the wild. Mol. Ecol. 12:24172428.
  • Cairney, M., J. B. Taggart, and B. Hoyheim. 2000. Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol. Ecol. 9:21552234.
  • DeHaan, P. W., and W. R. Ardren. 2005. Characterization of 20 highly variable tetranucleotide microsatellite loci for bull trout (Salvelinus confluentus) and cross-amplification in other Salvelinus species. Mol. Ecol. Notes 5:582585.
  • Essington, T. E., P. W. Sorensen, and D. G. Paron. 1998. High rate of red superimposition by brook trout (Salvelinus fontinalis) and brown trout (Salmo trutta) in Minnesota stream cannot be explained by habitat availability alone. Can. J. Fish. Aquat. Sci. 55:23102316.
  • Ferguson, M. M., R. G. Danzmann, and J. A. Hutchings. 1991. Incongruent estimates of population differentiation among brook charr, Salvelinus fontinalis, from Cape Race, Newfoundland, Canada, based upon allozyme and mitochondrial DNA variation. J. Fish Biol. 39(Suppl. A):7985.
  • Frankham, R., J. D. Ballou, and D. A. Briscoe. 2002. Introduction to conservation genetics. Cambridge Univ. Press, Cambridge , NY .
  • Fraser, D. J., and L. Bernatchez. 2005. Adaptive migratory divergence among sympatric brook charr populations. Evolution 59:611624.
  • Fraser, D. J., M. W. Jones, T. L. McParland, and J. A. Hutchings. 2007. Loss of historical immigration and the unsuccessful rehabilitation of extirpated salmon populations. Conserv. Genet. 8:527546.
  • Gende, S. M., T. P. Quinn, and M. F. Willson. 2001. Consumption choice by bears feeding on salmon. Oecologia 127:372382.
  • Guillemette, F., C. Vallée, A. Bertolo, and P. Magnan. 2011. The evolution of redd site selection in brook charr in different environments: same cue, same benefit for fitness. Freshwater Biol. 56:10171029.
  • Hutchings, J. A. 1990. The evolutionary significance of life history divergence among brook trout, Salvelinus fontinalis, populations. Dissertation, Memorial University of Newfoundland, St-John's, Newfoundland , Canada .
  • Hutchings, J. A. 1993. Adaptive life histories effected by age-specific survival and growth rate. Ecology 74:673684.
  • Hutchings, J. A. 1994. Age- and size-specific costs of reproduction within populations of brook trout, Salvelinus fontinalis. Oikos 70:1220.
  • Hutchings, J. A. 1996. Adaptive phenotypic plasticity in brook trout, Salvelinus fontinalis, life histories. Ecoscience 3:2532.
  • Kanno, Y., J. C. Vokoun, and B. H. Letcher. 2010. Sibship reconstruction for inferring mating systems, dispersal and effective population size in headwater brook trout (Salvelinus fontinalis) populations. Conserv. Genet. 10:110.
  • Krebs, C. J. 1999. Ecological methodology, 2nd ed. Benjamin Cummings, San Francisco , California .
  • Lee, A. M., S. Engen, and B. E. Saether. 2011. The influence of persistent individual differences and age at maturity on effective population size. Proc R. Soc. B. 278:33033312.
  • Miller, P. J. 1979. Adaptiveness and implications of small size in teleosts. Symp. Zool. Soc. Lond. 44:263–306.
  • Morrissey, M. B. 2009. Evolution in natural populations: Molecular marker-based inference of of life history and quantitative genetic data. Ph.D. thesis, University of Guelph , Guelph , Ontario . 202 pp.
  • Newton, I. 1994. The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol. Conserv. 70:265276.
  • Nunney, L., and D. R. Elam. 1994. Estimating the effective population size of conserved populations. Conserv. Biol. 8:175184.
  • Palstra, F. P., and D. E. Ruzzante. 2008. Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence?Mol. Ecol. 17:34283447.
  • Peterson, C. G. J. 1896. The yearly immigration of young plaice into the Limfjord from the German Sea. Report of the Danish Biological Station 1895 6:177.
  • Pritchard, J. K., P. Stephens, and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945959.
  • Raymond, M., and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86:248249.
  • Ridgway, M. S., and P. J. Blanchfield. 1998. Brook trout spawning areas in lakes. Ecol. Freshw. Fish 7:140145.
  • Roff, D. A. 1992. The Evolution of life histories: theory and Analysis. Chapman and Hall, New York .
  • Rogerson, R. J. 1981. The tectonic evolution and surface morphology of Newfoundland. Pp. 2455 in A. G. Macpherson and J. B. Macpherson, eds. The natural environment of Newfoundland, past and present. Memorial Univ. Printing Services, St. John's , NF .
  • Schnabel, Z. E. 1938. Estimation of the total fish population in a lake. Am. Math. Monthly 45:348352.
  • Shrimpton, J. M., and D. D. Heath. 2003. Census vs. effective population size in chinook salmon: large- and small-scale environmental perturbation effects. Mol. Ecol. 12:25712583.
  • Steen, R. P., and T. P. Quinn. 1999. Egg burial depth by sockeye salmon (Oncorhynchus nerka): implications for survival of embryos and natural selection on female body size. Can. J. Zool. 77:836841.
  • Tallmon, D. A., A. Koyuk, G. Luikart, and M. A. Beaumont. 2008. ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol. Ecol. Resour. 8:299301.
  • Theriault, V., L. Bernatchez, and J. J. Dodson. 2007. Mating system and individual reproductive success of sympatric anadromous and resident brook charr, Salvelinus fontinalis, under natural conditions. Behav. Ecol. Sociobiol. 62:5165.
  • Waples, R. S. 2002. Effective size of fluctuating salmon populations. Genetics 163:783791.
  • Waples, R. S., and C. Do. 2008. LDNE: a program for estimating effective population size from data on linkage disequilbrium. Mol. Ecol. Resour. 8:753756.
  • Waples, R. S., and C. Do. 2010. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol. Appl. 3:244262.
  • Waples, R. S., D. W. Jensen, and M. McClure. 2010. Eco-evolutionary dynamics: fluctuations in population growth rate reduce effective population size in chinook salmon. Ecology 91:902914.
  • Weir, B. S., and C. C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38:13581370.
  • Wright, S. 1931. Evolution in mendelian populations. Genetics 16:97159.
  • Ylikarjula, J., M. Heino, and U. Dieckmann. 1999. Ecology and adaptation of stunted growth in fish. Evol. Ecol. 13: 433453.