SEARCH

SEARCH BY CITATION

References

  • Barrett, A. J., N. D. Rawlings, and J. F. Woessner. 1998. Handbook of proteolytic enzymes, 1st ed. Academic Press, San Diego, California.
  • Bayes, A., M. Comellas-Bigler, M. Rodriguez de la Vega,K. Maskos, W. Bode, and F. X. Aviles, et al. 2005. Structural basis of the resistance of an insect carboxypeptidase to plant protease inhibitors. Proc. Nat. Acad. Sci. U.S.A. 102:1660216607.
  • Birk, Y. 2003. Plant protease inhibitors: significance in nutrition, plant protection, cancer prevention, and genetic engineering, 1st ed. Springer, Berlin.
  • Bolter, C. 1995. Colorado potato beetles (Leptinotarsa decemlineata) adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate. J. Insect Physiol. 41:10711078.
  • Botella, M. A., Y. Xu, T. N. Prabha, Y. Zhao, M. L. Narasimhan, and K. A. Wilson, et al. 1996. Differential expression of soybean cysteine proteinase inhibitor genes during development and in response to wounding and methyl jasmonate. Plant Physiol. 112:12011210.
  • Bown, D. P., H. S. Wilkinson, M. A. Jongsma, and J. A. Gatehouse. 2004. Characterization of cysteine proteinases responsible for digestive proteolysis in guts of larval western corn rootworm (Diabrotica virgifera) by expression in the yeast Pichia pastoris. Insect Biochem. Mol. Biol. 34:305320.
  • Branson, T. F., and J. L. Krysan. 1981. Feeding and oviposition behavior and life-cycle strategies of Diabrotica - an evolutionary view with implications for pest-management (Coleoptera, Chrysomelidae). Environ. Entomol. 10:826831.
  • Broadway, R. M. 1996. Dietary proteinase inhibitors alter complement of midgut proteases. Arch. Insect Biochem. Physiol. 32:3953.
  • Chi, Y. H., R. A. Salzman, S. Balfe, J. E. Ahn, W. Sun, and J. Moon, et al. 2009. Cowpea bruchid midgut transcriptome response to a soybean cystatin - costs and benefits of counter-defense. Insect Mol. Biol. 18:97110.
  • Cloutier, C., C. Jean, M. Fournier, S. Yelle, and D. Michaud. 2000. Adult Colorado potato beetles, Leptinotarsa decemlineata compensate for nutritional stress on oryzacystatin I-transgenic potato plants by hypertrophic behavior and over-production of insensitive proteases. Arch. Insect Biochem. Physiol. 44:6981.
  • Filippova, I. Y., E. N. Lysogorskaya, E. S. Oksenoit, G. N. Rudenskaya, and V. M. Stepanov. 1984. L-Pyroglutamyl-L-phenylalanyl-L-leucine-p-nitroanilide–a chromogenic substrate for thiol proteinase assay. Anal. Biochem. 143:293297.
  • Garabagi, F., B. W. French, A. W. Schaafsma, and K. P. Pauls. 2008. Increased expression of a cGMP-dependent protein kinase in rotation-adapted western corn rootworm (Diabrotica virgifera virgifera L.). Insect Biochem. Mol. Biol. 38:697704.
  • Gray, M. E., T. W. Sappington, N. J. Miller, J. Moeser, and M. O. Bohn. 2009. Adaptation and invasiveness of western corn rootworm: intensifying research on a worsening pest. Annu. Rev. Entomol. 54:303321.
  • Gruden, K., A. G. Kuipers, G. Guncar, N. Slapar, B. Strukelj, and M. A. Jongsma. 2004. Molecular basis of Colorado potato beetle adaptation to potato plant defense at the level of digestive cysteine proteinases. Insect Biochem. Mol. Biol. 34:365375.
  • Hendry, A. P., and M. T. Kinnison. 1999. Perspective: the pace of modern life: measuring rates of contemporary microevolution. Evolution 53:16371653.
  • Isard, S. A., J. L. Spencer, M. A. Nasser, and E. Levine. 2000. Aerial movement of western corn rootworm (Coleoptera: Chrysomelidae): diel periodicity of flight activity in soybean fields. Environ. Entomol. 29:226234.
  • Kaiser-Alexnat, R. 2009. Protease activities in the midgut of western corn rootworm (Diabrotica virgifera virgifera LeConte). J. Invertebr. Pathol. 100:169174.
  • Kim, J. H., and C. A. Mullin. 2003. Impact of cysteine proteinase inhibition in midgut fluid and oral secretion on fecundity and pollen consumption of western corn rootworm (Diabrotica virgifera virgifera). Arch. Insect Biochem. Physiol. 52:139154.
  • Knolhoff, L. M., D. W. Onstad, J. L. Spencer, and E. Levine. 2006. Behavioral differences between rotation-resistant and wild-type Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). Environ. Entomol. 35:10491057.
  • Knolhoff, L. M., J. J. Glas, J. L. Spencer, and M. R. Berenbaum. 2010a. Oviposition behaviors in relation to rotation resistance in the western corn rootworm. Environ. Entomol. 39:19221928.
  • Knolhoff, L. M., K. K. O. Walden, S. T. Ratcliffe, D. W. Onstad, and H. M. Robertson. 2010b. Microarray analysis yields candidate markers for rotation resistance in the western corn rootworm beetle, Diabrotica virgifera virgifera. Evol. Appl. 3:1727.
  • Koiwa, H., R. E. Shade, K. Zhu-Salzman, M. P. D'Urzo, L. L. Murdock, and R. A. Bressan, et al. 2000. A plant defensive cystatin (soyacystatin) targets cathepsin L-like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (Diabrotica virgifera virgifera). FEBS Lett. 471:6770.
  • Koo, Y. D., J. E. Ahn, R. A. Salzman, J. Moon, Y. H. Chi, and D. J. Yun, et al. 2008. Functional expression of an insect cathepsin B-like counter-defense protein. Insect Mol. Biol. 17:235245.
  • Lalitha, S., R. E. Shade, L. L. Murdock, R. A. Bressan, P. M. Hasegawa, and S. S. Nielsen. 2005. Effectiveness of recombinant soybean cysteine proteinase inhibitors against selected crop pests. Comparative biochemistry and physiol. Toxicology & Pharmacology 140:227235.
  • Lee, E. T., and J. W. Wang. 2003. Statistical methods for survival data analysis/Elisa T. Lee and John Wenyu Wang. 3rd ed. J. Wiley, New York.
  • Levine, E., and H. Oloumi-Sadeghi. 1996. Western corn rootworm (Coleoptera: Chrysomelidae) larval injury to corn grown for seed production following soybeans grown for seed production. J. Econ. Entomol. 89:10101016.
  • Levine, E., J. L. Spencer, S. A. Isard, D. W. Onstad, and M. E. Gray. 2002. Adaptation of the western corn rootworm to crop rotation: evolution of a new strain in response to a management practice. American Entomologist 48:94107.
  • Mabry, T. R., and J. L. Spencer. 2003. Survival and oviposition of a western corn rootworm variant feeding on soybean. Entomol. Exp. Appl. 109:113121.
  • Mabry, T. R., J. L. Spencer, E. Levine, and S. A. Isard. 2004. Western corn rootworm (Coleoptera: Chrysomelidae) behavior is affected by alternating diets of corn and soybean. Environ. Entomol. 33:860871.
  • Michaud, D., B. Nguyen-Quoc, and S. Yelle. 1993. Selective inhibition of Colorado potato beetle cathepsin H by oryzacystatins I and II. FEBS Lett. 331:173176.
  • Miller, N. J., K. S. Kim, S. T. Ratcliffe, A. Estoup, D. Bourguet, and T. Guillemaud. 2006. Absence of genetic divergence between western corn rootworms (Coleoptera: Chrysomelidae) resistant and susceptible to control by crop rotation. J. Econ. Entomol. 99:685690.
  • Miller, N. J., M. Ciosi, T. W. Sappington, S. T. Ratcliffe, J. L. Spencer, and T. Guillemaud. 2007. Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance. J. Appl. Entomol. 131:378385.
  • Misaka, T., M. Kuroda, K. Iwabuchi, K. Abe, and S. Arai. 1996. Soyacystatin, a novel cysteine proteinase inhibitor in soybean, is distinct in protein structure and gene organization from other cystatins of animal and plant origin. European Journal of Biochemistry/FEBS 240:609614.
  • Moon, J., R. A. Salzman, J. E. Ahn, H. Koiwa, and K. Zhu-Salzman. 2004. Transcriptional regulation in cowpea bruchid guts during adaptation to a plant defense protease inhibitor. Insect Mol. Biol. 13:283291.
  • Murata, M., S. Miyashita, C. Yokoo, M. Tamai, K. Hanada, and K. Hatayama et al. 1991. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 280:307310.
  • O'Neal, M. E., M. E. Gray, and C. A. Smyth. 1999. Population characteristics of a western corn rootworm (Coleoptera: Chrysomelidae) strain in East-central Illinois corn and soybean fields. J. Econ. Entomol. 92:13011310.
  • O'Neal, M. E., M. E. Gray, S. T. Ratcliffe, and K. L. Steffey. 2001. Predicting western corn rootworm (Coleoptera: Chrysomelidae) larval injury to rotated corn with Pherocon AM traps in soybeans. J. Econ. Entomol. 94:98105.
  • Onstad, D. W., D. W. Crwoder, S. A. Isard, E. Levine, J. L. Spencer, M. E. O'neal, et al. 2003. Does landscape diversity slow the spread of rotation-resistant western corn rootworm (Coleoptera: Chrysomelidae)? Environ. Entomol. 32:9921001.
  • Oyediran, I. O., B. E. Hibbard, and T. L. Clark. 2004. Prairie grasses as hosts of the western corn rootworm (Coleoptera: Chrysomelidae). Environ. Entomol. 33:740747.
  • Schroeder, J. B., S. T. Ratcliffe, and M. E. Gray. 2005. Effect of four cropping systems on variant western corn rootworm (Coleoptera: Chrysomelidae) adult and egg densities and subsequent larval injury in rotated maize. J. Econ. Entomol. 98:15871593.
  • Siegfried, B. D., N. Waterfield, and ffrench-Constant RH,. 2005. Expressed sequence tags from Diabrotica virgifera virgifera midgut identify a coleopteran cadherin and a diversity of cathepsins. Insect Mol. Biol. 14:137143.
  • Spencer, J. L., and S. Raghu. 2009. Refuge or reservoir? The potential impacts of the biofuel crop Miscanthus x giganteus on a major pest of maize. PLoS One 4:e8336.
  • Spencer, J. L., E. Levine, S. A. Isard, and T. R. Mabry. 2005. Movement, dispersal, and behavior of western corn rootworm adults in rotated corn and soybean fields. Pp. 121144 in S. Vidal, U. Kuhlmann, C. R. Edwards, eds. Western corn rootworm: ecology and management. CABI Publishing, Wallingford, Oxfordshire.
  • Spencer, J. L., B. E. Hibbard, J. Moeser, and D. W. Onstad. 2009. Behaviour and ecology of the western corn rootworm (Diabrotica virgifera virgifera LeConte). Agric. For. Entomol. 11:927.
  • USDA-NASS. 2011. Crop Production 2010 Summary, 2011th edn. National Agricultural Statistics Service, USDA, Washington, D.C..
  • Wilson, T. A., and B. E. Hibbard. 2004. Host suitability of nonmaize agroecosystem grasses for the western corn rootworm (Coleoptera: Chrysomelidae). Environ. Entomol. 33:11021108.
  • Zavala, J. A., A. G. Patankar, K. Gase, D. Hui, and I. T. Baldwin. 2004. Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuata demonstrates their function as antiherbivore defenses. Plant Physiol. 134:11811190.
  • Zavala, J. A., C. L. Casteel, E. H. DeLucia, and M. R. Berenbaum. 2008. Anthropogenic increase in carbon dioxide compromises plant defense against invasive insects. Proc. Nat. Acad. Sci. U.S.A. 105:51295133.
  • Zavala, J. A., C. L. Casteel, P. D. Nabity, M. R. Berenbaum, and E. H. DeLucia. 2009. Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. Oecologia 161:3541.
  • Zhao, Y., M. A. Botella, L. Subramanian, X. Niu, S. S. Nielsen, and R. A. Bressan, et al. 1996. Two wound-inducible soybean cysteine proteinase inhibitors have greater insect digestive proteinase inhibitory activities than a constitutive homolog. Plant Physiol. 111:12991306.
  • Zhu-Salzman, K., H. Koiwa, R. A. Salzman, R. E. Shade, and J. E. Ahn. 2003. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor. Insect Mol. Biol. 12:135145.