SEARCH

SEARCH BY CITATION

References

  • Addo-Bediako, A., S. L. Chown, and K. J. Gaston. 2000. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. London B 267:739745.
  • Angilletta, M. J., Jr. 2009. Thermal adaptation. A theoretical and empirical synthesis. Oxford Univ. Press, Oxford.
  • Berrigan, D., and L. Partridge. 1997. Influence of temperature and activity on the metabolic rate of adult Drosophila melanogaster. Comp. Bioch. Physiol. 118A:13011307.
  • Block, W., N. R. Webb, S. Coulson, I. D. Hodkinson, and M. R. Worland. 1994. Thermal adaptation in the Arctic collembolan Onychiurus arcticus (Tullberg). J. Insect Physiol. 40:715722.
  • Blows, M. W., and A. A. Hoffmann. 2005. A reassessment of genetic limits to evolutionary change. Ecology 86:13711384.
  • Bubli, O. A., A. G. Imasheva, and V. Loeschcke. 1998. Selection for knockdown resistance to heat in Drosophila melanogaster at high and low larval densities. Evolution 52:619625.
  • Bulmer, M. G. 1971. The effect of selection on genetic variability. Am. Nat. 105:201211.
  • Bulmer, M. G. 1976. The effect of selection on genetic variability: a simulation study. Genet. Res. 28:101117.
  • Castañeda, L. E., G. Calabria, L. A. Betancourt, E. L. Rezende, and M. Santos. 2012. Measurement error in heat tolerance assays. J. Therm. Biol 37:432437.
  • Cavicchi, S., D. Guerra, V. Latorre, and R. B. Huey. 1995. Chromosomal analysis of heat-shock tolerance in Drosophila melanogaster evolving at different temperatures in the laboratory. Evolution 49:676684.
  • Chevin, L.-M., R. Lande, and G. M. Mace. 2010. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8(4):e1000357.
  • Chidawanyika, F., and J. S. Terblanche. 2011. Rapid thermal responses and thermal tolerance in adult codling moth Cydia pomonella (Lepidoptera: Tortricidae). J. Insect Physiol. 57:108117.
  • Chown, S. L., K. R. Jumbam, J. G. Sørensen, and J. S. Terblanche. 2009. Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct. Ecol. 23:133140.
  • Chown, S. L., A. A. Hoffmann, T. N. Kristensen, M. J. Angilletta, N. C. Stenseth, and C. Pertoldi. 2010. Adapting to climate change: a perspective from evolutionary physiology. Clim. Res. 43:315.
  • David, J. R., and P. Capy. 1988. Genetic variation of Drosophila melanogaster natural populations. Trends Genet. 4:106111.
  • Deutsch, C. A., J. J. Tewksbury, R. B. Huey, K. S. Sheldon, C. K. Ghalambor, D. C. Haak, et al. 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 105:66686672.
  • Elliott, J. M., J. A. Elliott, and J. D. Allonby. 1994. The critical thermal limits for the stone loach, Noemacheilus barbatulus, from three populations in north-west England. Freshwater Biol. 32:593601.
  • Falconer, D. S., and T. F. C. Mackay. 1996. Introduction to quantitative genetics. Longman Group Limited, Harlow.
  • Feder, M. E. 1996. Ecological and evolutionary physiology of stress proteins and the stress response: the Drosophila melanogaster model. Pp. 79102 in I. A. Johnston and A. F. Bennet, eds. Phenotypic and evolutionary adaptation to temperature. Cambridge Univ. Press, Cambridge.
  • Felsenstein, J. 1965. The effect of linkage on directional selection. Genetics 52:349363.
  • Felsenstein, J. 1974. The evolutionary advantage of recombination. Genetics 78:737756.
  • Folk, D. G., P. Zwollo, D. M. Rand, and G. W. Gilchrist. 2006. Selection on knockdown performance in Drosophila melanogaster impacts thermotolerance and heat-shock response differently in females and males. J. Exp. Biol. 209:39643973.
  • Folk, D. G., L. A. Hoekstra, and G. W. Gilchrist. 2007. Critical thermal maxima in knockdown-selected Drosophila: are thermal endpoints correlated? J. Exp. Biol. 210:26492656.
  • Fraser, A., and D. Burnell. 1970. Computer models in genetics. McGraw-Hill, New York.
  • Ghalambor, C. K., J. K. McKay, S. P. Carroll, and D. N. Reznick. 2007. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21:394407.
  • Gilchrist, G. W., and R. B. Huey. 1999. The direct response of Drosophila melanogaster to selection on knockdown temperature. Heredity 83:1529.
  • González, J., T. L. Karasov, P. W. Messer, and D. A. Petrov. 2010. Genome-wide patterns of adaptation to temperate environments associated with transposable elements in Drosophila. PLoS Genet. 6(4):e1000905.
  • Hayes, B., and M. E. Goddard. 2001. The distribution of the effects of genes affecting quantitative traits in livestock. Genet. Sel. Evol. 33:209229.
  • Helmuth, B., J. G. Kingsolver, and E. Carrington. 2005. Biophysics, physiological ecology, and climate change: does mechanism matter? Ann. Rev. Physiol. 67:177201.
  • Hill, W. G., and A. Robertson. 1966. The effect of linkage on limits to artificial selection. Genet. Res. 8:269294.
  • Hochachka, P. W., and G. N. Somero. 2002. Biochemical adaptation: mechanism and process in physiological evolution. Oxford Univ. Press, New York.
  • Hoffmann, A. A. 2010. Physiological climatic limits in Drosophila: patterns and implications. J. Exp. Biol. 213:870880.
  • Hoffmann, A. A., and C. M. Sgrò. 2011. Climate change and evolutionary adaptation. Nature 470:479485.
  • Hoffmann, A. A., and A. R. Weeks. 2007. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica 129:133147.
  • Hoffmann, A. A., H. Dagher, M. Hercus, and D. Berrigan. 1997. Comparing different measures of heat resistance in selected lines of Drosophila melanogaster. J. Insect Physiol. 43:393405.
  • Hoffmann, A. A., R. J. Hallas, J. A. Dean, and M. Schiffer. 2003a. Low potential for climatic stress adaptation in a rainforest Drosophila species. Science 301:100102.
  • Hoffmann, A. A., J. G. Sørensen, and V. Loeschcke. 2003b. Adaptation of Drosophila to temperature extremes: bringing together quantitative and molecular approaches. J. Therm. Biol 28:175216.
  • Huey, R. B., L. Partridge, and K. Fowler. 1991. Thermal sensitivity of Drosophila melanogaster responds to laboratory natural selection. Evolution 45:751756.
  • Huey, R. B., W. D. Crill, J. G. Kingsolver, and K. E. Weber. 1992. A method for rapid measurement of heat or cold resistance of small insects. Funct. Ecol. 6:489494.
  • Huey, R. B., C. A. Deutsch, J. J. Tewksbury, L. J. Vitt, P. E. Hertz, H. J. Álvarez Pérez, et al. 2009. Why tropical forest lizards are vulnerable to climate warming. Proc. R. Soc. London B 276:19391948.
  • Jenkins, N. L., and A. A. Hoffmann. 1994. Genetic and maternal variation for heat resistance in Drosophila from the field. Genetics 137:783789.
  • Kellermann, V. M., B. van Heerwaarden, A. A. Hoffmann, and C. M. Sgrò. 2006. Very low additive genetic variance and evolutionary potential in multiple populations of two rainforest Drosophila species. Evolution 60:11041108.
  • Kellermann, V., B. van Heerwaarden, C. M. Sgrò, and A. A. Hoffmann. 2009. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science 325:12441246.
  • Krebs, R. A., and V. Loeschcke. 1997. Estimating heritability in a threshold trait: heat-shock tolerance in Drosophila buzzatii. Heredity 79:252259.
  • Levins, R. 1969. Thermal acclimation and heat resistance in Drosophila species. Am. Nat. 103:483499.
  • Loeschcke, V., R. A. Krebs, J. Dahlgaard, and P. Michalak. 1997. High temperature stress and the evolution of thermal resistance in Drosophila. Pp. 175190 in R. Bijlsma and V. Loeschcke, eds. Environmental stress adaptation and evolution. Birkhauser Verlag, Basel.
  • Lutterschmidt, W. I., and V. H. Hutchinson. 1997. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can. J. Zool. 75:15531560.
  • MathWorks. 2005. MATLAB. Version 7.0.4. MathWorks, Inc., Natick, MA. Available via <http://www.mathworks.com>.
  • Maynard Smith, J. 1957. Temperature tolerance and acclimatization in Drosophila subobscura. J. Exp. Biol. 34:8596.
  • McColl, G., A. A. Hoffmann, and S. W. McKechnie. 1996. Response of two heat shock genes to selection for knockdown heat resistance in Drosophila melanogaster. Genetics 143:16151627.
  • Mitchell, K. A., and A. A. Hoffmann. 2010. Thermal ramping rate influences evolutionary potential and species differences for upper thermal limits in Drosophila. Funct. Ecol. 24:694700.
  • Mora, C., and M. F. Maya. 2006. Effect of the rate of temperature increase of the dynamic method on the heat tolerance of fishes. J. Therm. Biol 31:337341.
  • Mousseau, T. A., and D. A. Roff. 1987. Natural selection and the heritability of fitness components. Heredity 59:181197.
  • Orr, H. A. 1999. The evolutionary genetics of adaptation: a simulation study. Genet. Res. 74:207214.
  • Overgaard, J., A. A. Hoffmann, and T. N. Kristensen. 2011a. Assesing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol 36:409416.
  • Overgaard, J., T. N. Kristensen, K. A. Mitchell, and A. A. Hoffmann. 2011b. Thermal tolerance and tropical Drosophila species: does phenotypic plasticity increase with latitude? Am. Nat. 178:S80S96.
  • Parkash, P., V. Sharma, and B. Kalra. 2010. Correlated changes in thermotolerance traits and body color phenotypes in montane populations of Drosophila melanogaster: analysis of within- and between-population variations. J. Zool. 280:4959.
  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637669.
  • Parsons, P. A. 1980. Parallel climatic races for tolerances to high temperature-desiccation stress in two Drosophila species. J. Biogeog. 7:97101.
  • Peck, L. S., M. S. Clark, S. A. Morley, A. Massey, and H. Rossetti. 2009. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23:248256.
  • Powell, J. R. 1997. Progress and prospects in evolutionary biology. The Drosophila model. Oxford Univ. Press, New York.
  • Rako, L., M. J. Blacket, S. W. McKechnie, and A. A. Hoffmann. 2007. Candidate genes and thermal phenotypes: identifying ecologically important genetic variation for thermotolerance in the Australian Drosophila melanogaster cline. Mol. Ecol. 16:29482957.
  • Rand, D. M., D. M. Weinreich, D. Lerman, D. Folk, and G. W. Gilchrist. 2010. Three selections are better than one: clinal variation of thermal QTL from independent selection experiments in Drosophila. Evolution 64:29212934.
  • Rezende, E. L., and M. Santos. 2012. Comment on ‘Ecologically relevant measures of tolerance to potentially lethal temperatures’. J. Exp. Biol. 215:702703.
  • Rezende, E. L., M. Tejedo, and M. Santos. 2011. Estimating the adaptive potential of critical thermal limits: methodological problems and evolutionary implications. Funct. Ecol. 25:111121.
  • Ribeiro, P. L., A. Camacho, and C. A. Navas. 2012. Considerations for assessing maximum critical temperatures in small ectothermic animals: insights from leaf-cutting ants. PLoS ONE 7:e32083.
  • Rockman, M. V. 2012. The QTN program and the alleles that matter for evolution: all that's gold does not glitter. Evolution 66:117.
  • Roff, D. A., and T. A. Mousseau. 1987. Quantitative genetics and fitness: lessons from Drosophila. Heredity 58:103118.
  • Santos, M., L. E. Castañeda, and E. L. Rezende. 2011. Making sense of heat tolerance estimates in ectotherms: lessons from Drosophila. Funct. Ecol. 25:11691180.
  • Schmidt, P. S., L. Matzkin, M. L. Ippolito, and W. F. Eanes. 2005. Geographic variation in diapause incidence, life history traits, and climatic adaptation in Drosophila melanogaster. Evolution 59:17211732.
  • Sezgin, E., D. D. Duvernell, L. M. Matzkin, Y. Duan, C.-T. Zhu, B. C. Verrelli, et al. 2004. Single locus latitudinal clines in metabolic genes, derived alleles, and their relationship to temperate adaptation in Drosophila melanogaster. Genetics 168:923931.
  • Sgrò, C. M., J. Overgaard, T. N. Kristensen, K. A. Mitchell, F. E. Cockerell, and A. A. Hoffmann. 2010. A comprehensive assessment of geographic variation in heat tolerance and hardening capacity in populations of Drosophila melanogaster from eastern Australia. J. Evol. Biol. 23:24842493.
  • Shrimpton, A. E., and A. Robertson. 1988. The isolation of polygenic factors controlling bristle score in Drosophila melanogaster. II. Distribution of third chromosome bristle effects within chromosome sections. Genetics 118:445459.
  • Skelly, D. K., L. N. Joseph, H. P. Possingham, L. K. Freidenburg, T. J. Farrugia, M. T. Kinnison, et al. 2007. Evolutionary responses to climate change. Cons. Biol. 21:13531355.
  • Sørensen, J. G., M. M. Nielsen, M. Kruhøffer, J. Justesen, and V. Loeschcke. 2005. Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress Chap. 10:312328.
  • Sunday, J. M., A. E. Bates, and N. K. Dulvy. 2011. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. London B 278:18231830.
  • Terblanche, J. S., J. A. Deere, S. Clusella-Trullas, C. Janion, and S. L. Chown. 2007. Critical thermal limits depend on methodological context. Proc. R. Soc. London B 274:29352942.
  • Terblanche, J. S., S. Clusella-Trullas, J. A. Deere, and S. L. Chown. 2008. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts. J. Insect Physiol. 54:114127.
  • Visser, M. E. 2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc. R. Soc. London B 275:649659.
  • Williams, A. E., M. R. Rose, and T. J. Bradley. 1997. CO2 release patterns in Drosophila melanogaster: the effect of selection for desiccation resistance. J. Exp. Biol. 200:615624.
  • Wolak, M. E., D. J. Fairban, and Y. R. Paulsen. 2011. Guidelines for estimating repeatability. Methods Ecol. Evol. 3:129137.