SEARCH

SEARCH BY CITATION

References

  • Bailey, J. V., S. B. Joys, K. M. Kalanetra, B. E. Flood, and F. A. Corsetti. 2007. Evidence of giant sulfur bacteria in Neoproterozoic phosphorites. Nature 445:198201.
  • Banerjee, D. M. 1971. Precambrian stromatolitic phosphorites of Udaipur, Rajasthan, India. Geol. Soc. Am. Bull. 82:23192329.
  • Battistuzzi, F. U., A. Feijao, and S. B. Hedges. 2004. A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land. BMC Evol. Biol. 4:44. doi:10.1186/1471-2148-4-44.
  • Bau, M., and P. Dulski. 1996. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambr. Res. 79:3755.
  • Baur, M. E., J. M. Hayes, S. A. Studley, and M. R. Walter. 1985. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron-formations in the Hamersley Group of Western Australia. Econ. Geol. 80:270282.
  • Bekker, A., H. D. Holland, P. L. Wang, D. Rumble, H. J. Stein, J. L. Hannah, et al. 2004. Dating the rise of atmospheric oxygen. Nature 427:117120.
  • Bekker, A., J. F. Slack, N. Planavsky, B. Krapež, A. Hofmann, K. O. Konhauser, et al. 2010. Iron formation: the sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Econ. Geol. 105:467508.
  • Berner, R. A. 1973. Phosphate removal from sea water by adsorption on volcanogenic ferric oxides. Earth Planet. Sci. Lett. 18:7786.
  • Beukes, N. J. 1984. Sedimentology of the Kuruman and Griquatown iron formations, Transvaal Supergroup, Griqualand West, South Africa. Precambr. Res. 24:4784.
  • Bird, L. J., V. Bonnefoy, and D. K. Newman. 2011. Bioenergetic challenges of microbial iron metabolisms. Trends Microbiol. 19:330340.
  • Bjerrum, C. J., and D. E. Canfield. 2002. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417:159162.
  • Brocks, J. J., and J. Banfield. 2009. Unraveling ancient microbial history with community proteogenomics and lipid geochemistry. Nat. Rev. Microbiol. 7:601609.
  • Buick, R. 2008. When did oxygenic photosynthesis evolve? Phil. Trans. R. Soc. B 363:27312743.
  • Campbell, I. H., and C. M. Allen. 2008. Formation of supercontinents linked to increases in atmospheric oxygen. Nat. Geosci. 1:554558.
  • Canfield, D. E., M. T. Rosing, and C. Bjerrum. 2006. Early anaerobic metabolism. Phil. Trans. R. Soc. B 361:18191834.
  • Chown, E. H., E. N'hah, and W. U. Mueller. 2000. The relation between iron-formation and low temperature hydrothermal alternation in an Archean volcanic environment. Precambr. Res. 101:263275.
  • Cloud, P. 1973. Paleoecological significance of the banded iron-formation. Econ. Geol. 68:11351143.
  • Condon, D., M. Zhu, S. Bowring, W. Wang, A. Yang, and Y. Jin. 2005. U-Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308:9598.
  • Cook, P. J., and J. H. Shergold. 1984. Phosphorus, phosphorites and skeletal evolution at the Precambrian-Cambrian boundary. Nature 308:231236.
  • Crowe, S. A., C. A. Jones, S. Katsev, C. Magen, A. H. O'Neill, A. Sturm, et al. 2008. Photoferrotrophs thrive in an Archean Ocean analogue. Proc. Natl Acad. Sci. USA 105:1593815943.
  • Dukino, R. R., B. F. England, and M. Kneeshaw. 2000. Phosphorus distribution in BIF-derived iron ores of Hamersley Province, Western Australia. Appl. Earth Sci. 109:168176.
  • Edwards, H. G. M., F. Garcia-Pichel, E. M. Newton, and D. D. Wynn-Williams. 1999. Vibrational Raman spectroscopic study of scytonemin, the UV-protective cyanobacterial pigment. Spectrochimica Acta Part A 56:193200.
  • Ehrlich, H. L. 1990. Geomicrobiology. 2nd ed. Marcel Dekker, New York. 646 pp.
  • Fike, D. A., J. P. Grotzinger, L. M. Pratt, and R. E. Summons. 2006. Oxidation of the Ediacaran ocean. Nature 444:744747.
  • Föllmi, K. B. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits. Earth-Sci. Rev. 40:55124.
  • Föllmi, K. B., F. Tamburini, R. Hosein, B. van de Schootbrugge, K. Arn, and C. Rambeau. 2004. Phosphorus, a servant faithful to Gaia? Biosphere remediation rather than regulation. Pp. 7992 in S. H. Schneider, J. R. Miller, E. Crist and P. J. Boston, eds. Scientists Debate Gaia: the Next Century. The MIT Press, London.
  • Geider, R. J., E. H. Delucia, P. G. Palkowski, A. C. Finzi, J. P. Grime, J. Grace, et al. 2001. Primary productivity of planet earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Glob. Change Biol. 7:849982.
  • Godfrey, L. V., and P. G. Falkowski. 2009. The cycling and redox state of nitrogen in the Archaean ocean. Nat. Geosci. 2:725729.
  • Goldhammer, T., V. Brüchert, T. G. Ferdelman, and M. Zabel. 2010. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat. Geosci. 3:557561.
  • Han, T. M., and B. Runnegar. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee iron-formation. Michigan Sci. 257:232235.
  • Hou, X., L. Ramsköld, and J. Bergström. 1991. Composition and preservation of the Chengjiang fauna a Lower Cambrian soft-bodied biota. Zoolog. Scr. 20:395411.
  • Hou, X. G., R. J. Aldridge, J. Bergström, D. J. Siveter, and X. H. Feng. 2004. The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Blackwell Publishing, Bath. 248 pp.
  • Jiang, S.-Y., J.-H. Yang, Y.-Q. Chen, H.-Z. Feng, K.-D. Zhao, and P. Ni. 2007. Extreme enrichment of polymetallic Ni-Mo-PGE-Au in Lower Cambrian black shales of South China: An Os isotope and PGE geochemical investigation. Palaeogeogr., Palaeoclimatol., Palaeoecol. 254:217228.
  • Kappler, A., C. Pasquero, K. O. Konhauser, and D. K. Newman. 2005. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865868.
  • Kharecha, P., J. Kasting, and J. Siefert. 2005. A coupled atmosphere-ecosystem model of the early Archean Earth. Geobiology 3:5376.
  • Kirschvink, J. L., and R. E. Kopp. 2008. Palaeoproterozoic ice houses and the evolution of oxygen-mediating enzymes: the case for a late origin of photosystem II. Phil. Trans. R. Soc. B 363:27552765.
  • Klein, C. 2005. Some Precambrian banded iron-formations (BIFs) from around the world: their age, geological setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral. 90:14731499.
  • Knoll, A. H. 2008. Cyanobacteria and Earth history. Pp. 120 in A. Herrero and E. Flores, eds. The Cyanobacteria; Molecular Biology, Genomics and Evolution. Caister Academic Press, Norfolk, UK.
  • Kolo, K., K. Konhauser, W. E. Krumbein, Y. van Ingelgem, A. Hubin, and P. Claeys. 2009. Microbial dissolution of hematite and associated cellular fossilization by reduced iron phases: a study of ancient microbe-mineral surface interactions. Astrobiology 9:777796.
  • Konhauser, K. O., T. Hamade, R. Raiswell, R. C. Morris, F. G. Ferris, G. Southam, et al. 2002. Could bacteria have formed the Precambrian banded iron formations? Geology 30:10791082.
  • Konhauser, K. O., L. Amskold, S. V. Lalonde, N. R. Posth, A. Kappler, and A. Anbar. 2007a. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258:87100.
  • Konhauser, K. O., S. V. Lalonde, L. Amskold, and H. D. Holland. 2007b. Was there really an Archean phosphate crisis? Science 315:1234.
  • Krom, M. D., and R. A. Berner. 1980. Adsorption of phosphate in anoxic marine sediments. Limnol. Oceanogr. 25:797806.
  • Li, Y. L., K. O. Konhuaser, D. R. Cole, and T. J. Phelps. 2011. Mineral ecophysiological evidence for biogeochemical cycles in an early Paleoproterozoic banded iron formation. Geology 39:707710.
  • Luo, Z.-X. 2005. Doushantuo fossils: life on the eve of animal radiation. J. Paleontol. 79:10401042.
  • Martin, W., C. Rotte, M. Hoffmeister, U. Theissen, G. Gelius-Dietrich, S. Ahr, et al. 2003. Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55:193204.
  • Martín-Algarra, A., and A. Sánchez-Navas. 2000. Bacterially mediated authigenesis in Mesozoic stromatolites from condensed pelagic sediments (Betic Cordillera, southern Spain). Pp. 499525 in C. R. Glenn, J. Lucas and L. Prévôt-Lucas, eds. Marine Authigenesis: from global to Microbial. SEPM Special Publication, 66.
  • McFadden, K. A., J. Huang, X. Chu, G. Jiang, A. J. Kaufman, C. Zhou, et al. 2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation. Proc. Natl Acad. Sci. USA 105:31973202.
  • Meldrum, F. C., and H. Cölfen. 2008. Controlling mineral morphologies and structures in biological and synthetic systems. Chemical Review 108:43324432.
  • Miyano, T., and N. J. Beukes. 1984. Phase relations of stilpnomelane, ferriannite and riebeckite in very low-grade iron-formations. Trans. Geol. Soc. South Africa 87:111124.
  • Morris, R. C. 1973. A pilot study of phosphorus distribution in parts of the Brockman Iron Formation, Hamersley Group, Western Australia. Western Australia Geological Survey Annual Report 1972:7581.
  • Morris, R. C. 1993. Genetic modeling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambr. Res. 60:242286.
  • Mueller, W. U., and J. K. Mortensen. 2002. Age constrains and characteristics of subaqueous volcanic construction, the Archean Hunter Mine Group, Abitibi Greenstone belt. Precambr. Res. 115:119152.
  • Nisbet, E. G., and R. E. R. Nisbet. 2008. Methane, oxygen, photosynthesis, rubisco and the regulation of the air through time. Philos. Trans. R. Soc. B 363:27452754.
  • Nisbet, E. G., and N. H. Sleep. 2001. The habitat and nature of early life. Nature 409:10831091.
  • Nutman, A. P., and C. R. L. Friend. 2006. Petrography and geochemistry of apatites in banded iron formation, Akilia, W. Greenland: consequence for oldest life evidence. Precambr. Res. 147:100106.
  • Ohmoto, H., Y. Watanabe, K. E. Yamaguchi, H. Naraoka, M. Haruna, T. Kakegawa, et al. 2006. Chemical and biological evolution of early Earth: constrains from banded iron formations. Pp. 291331 in S. E. Kesler and H. Ohmoto, eds. Evolution of early Earth's atmosphere, hydrosphere – constrains from ore deposits. Geological Society of America Memoir 198.
  • Olson, J. M. 2006. Photosynthesis in the Archean Era. Photosynth. Res. 88:109117.
  • Papineau, D. 2010. Global biogeochemical changes at both ends of the Proterozoic: insights from phosphorites. Astrobiology 10:165181.
  • Papineau, D., R. Purohit, T. Goldberg, D. Pi, G. A. Shields, H. Bhu, et al. 2009. High primary productivity and nitrogen cycling after the Palaeoproterozoic phosphogenic event in the Aravalli Supergroup, India. Precambr. Res. 171:3756.
  • Pickard, A. L. 2003. SHRIMP U-Pb zircon ages for the Palaeoproterozoic Kuruman Iron Formation, Northern Cape Province, South Africa: evidence for simultaneous BIF deposition on Kaapvaal and Pilbara Cratons. Precambr. Res. 125:275315.
  • Piper, D. Z., and A. L. Codispoti. 1975. Marine phosphorite deposits and the nitrogen cycle. Science 179:564565.
  • Planavsky, N. J., O. J. Rouxel, A. Bekker, S. V. Lalonde, K. O. Konhauser, C. T. Reinhard, et al. 2010. The evolution of the marine phosphate reservoir. Nature 467:10881090.
  • Poulton, S. W., and D. E. Canfield. 2006. Co-diagenesis of iron and phosphorus in hydrothermal sediments from the southern East Pacific Rise: implications for the evaluation of paleoseawater phosphate concentrations. Geochim. Cosmochim. Acta 70:58835898.
  • Pyle, L. J., G. M. Narbonne, G. S. Nowlan, S. Xiao, and N. P. James. 2006. Early Cambrian metazoan eggs, embryos, and phosphatic microfossils from northwestern Canada. J. Paleontol. 80:811825.
  • Riding, R. 2002. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179214.
  • Sánchez-Navas, A., and A. Martín-Algarra. 2001. Genesis of apatite in phosphate stromatolites. Eur. J. Mineral. 13:361376.
  • Schulz, H. N., and H. D. Schulz. 2005. Large sulfur bacteria and the formation of phosphorite. Science 307:416418.
  • Schwartzman, D., M. McMenamin, and T. Volk. 1993. Did surface temperatures constrain microbial evolution? Bioscience 43:390393.
  • Stal, L. J. 2000. Cyanobacterial mats and stromatolites. Pp. 61120 in B. A. Whitton and M. Potts, eds. The Ecology of Cyanobacteria. Kluwer Academic Publishers, Netherlands.
  • Steiner, M., E. Wallis, B.-D. Erdtmann, Y. Zhao, and R. Yang. 2001. Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils – insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr., Palaeoclimatol., Palaeoecol. 169:165191.
  • Summons, R. E., T. G. Powell, and C. J. Boreham. 1988. Petroleum geology and geochemistry of the middle Proterozoic McArthur Basin, Northern Australia: III. Composition of extractable hydrocarbons. Geochim. Cosmochim. Acta 52:17471763.
  • Trendall, A. F., and J. G. Blockley. 1970. The iron formation of the Precambrian Hamersley Group, Western Australia, with special reference to crocidolite. Geol. Sur. Western Australia Bull. 119:365.
  • Valentine, J. W. 2002. Prelude to the Cambrian Explosion. Annu. Rev. Earth Planet. Sci. 30:285306.
  • Volkman, J. K., S. M. Marrett, S. I. Blackburn, M. P. Mansour, E. L. Sikes, and F. Gelin. 1998. Microalgal biomarkers: a review of recent research developments. Org. Geochem. 29:11631179.
  • Weiershäuser, L., and E. T. C. Spooner. 2005. Seafloor hydrothermal fluids, Ben Nevis area, Abitibi Greenstone Belt: implications for Archean (~2.7 Ga) seawater properties. Precambr. Res. 138:89123.
  • Westheimer, F. H. 1987. Why nature choose phosphates. Science 235:11731178.
  • Wheat, C. G., R. A. Feely, and M. J. Motti. 1996. Phosphate removal by oceanic hydrothermal processes: an update of the phosphorus budget in the oceans. Geochim. Cosmochim. Acta 60:35933608.
  • Widdel, F., S. Schnell, S. Heising, A. Ehrenreich, B. Assmus, and B. Schink. 1993. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834836.
  • Wilby, P. R., D. E. G. Briggs, P. Bernier, and C. Gaillard. 1996. Role of microbial mats in the fossilliation of soft tissues. Geology 24:787790.
  • Xiao, S., and A. Knoll. 2000. Phosphatization animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. J. Paleontol. 74:767788.
  • Xie, S., R. D. Pancost, H. Yin, H. Wang, and R. P. Evershed. 2005. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature 434:494497.
  • Xiong, J., and C. E. Bauer. 2002. Complex evolution of photosynthesis. Annu. Rev. Plant Biol. 53:503521.
  • Young, G. M., V. von Brunn, D. J. C. Gold, and W. E. L. Minter. 1998. Earth's oldest reported glaciations: physical and chemical evidence from the Archean Mozaan Group (~2.9 Ga) of South Africa. J. Geol. 106:523538.