SEARCH

SEARCH BY CITATION

Keywords:

  • Coral Reefs;
  • historical ecology;
  • migrants per generation;
  • population connectivity;
  • shifting baselines

Abstract

Quantifying population connectivity is important for visualizing the spatial and temporal scales that conservation measures act upon. Traditionally, migration based on genetic data has been reported in migrants per generation. However, the temporal scales over which this migration may occur do not necessarily accommodate the scales over which human perturbations occur, leaving the potential for a disconnect between population genetic data and conservation action based on those data. Here, we present a new metric called the “Rule of Memory”, which helps conservation practitioners to interpret “migrants per generation” in the context both of human modified ecosystems and the cultural memory of those doing the modification. Our rule states that clades should be considered functionally endemic regardless of their actual taxonomic designation if the migration between locations is insufficient to maintain a viable population over the timescales of one human generation (20 years). Since larger animals are more likely to be remembered, we quantify the relationship between migrants per human (N) and body mass of the organism in question (M) with the formula N = 10M−1. We then use the coral reef fish Pomacentrus moluccensis to demonstrate the taxonomic and spatial scales over which this rule can be applied. Going beyond minimum viable population literature, this metric assesses the probability that a clade's existence will be forgotten by people throughout its range during a period of extirpation. Because conservation plans are predicated on having well-established baselines, a loss of a species over the range of one human generation evokes the likelihood of that species no longer being recognized as a member of an ecosystem, and thus being excluded in restoration or conservation prioritization. [Correction added on 26 December 2012, after first online publication: this formula has been corrected to N=10M−1].