Genetic evidence for male-biased dispersal in the Qinghai toad-headed agamid Phrynocephalus vlangalii and its potential link to individual social interactions



Yin Qi, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China. Tel: (86)-134-3849-6655; Fax: (86)-028-85222753; Email:


Sex-biased dispersal has profound impacts on a species' biology and several factors have been attributed to its evolution, including mating system, inbreeding avoidance, and social complexity. Sex-biased dispersal and its potential link to individual social interactions were examined in the Qinghai toad-headed agamid (Phrynocephalus vlangalii). We first determined the pattern of sex-biased dispersal using population genetic methods. A total of 345 specimens from 32 sites in the Qaidam Basin were collected and genotyped for nine microsatellite DNA loci. Both individual-based assignment tests and allele frequency-based analyses were conducted. Females revealed much more genetic structure than males and all results were consistent with male-biased dispersal. First-generation migrants were also identified by genetic data. We then examined eight social interaction-related morphological traits and explored their potential link to sex-biased dispersal. Female residents had larger heads and longer tails than female migrants. The well-developed signal system among females, coupled with viviparity, might make remaining on natal sites beneficial, and hence promote female philopatry. Dominant females with larger heads were more likely to stay. Contrary to females, male migrants had larger heads and belly patches than residents, suggesting that dispersal might confer selective advantages for males. Such advantages may include opportunities for multiple mating and escaping from crowded sites. Large belly patches and several other morphological traits may assist their success in obtaining mates during dispersal. Furthermore, a relatively high relatedness (R = 0.06) among females suggested that this species might have rudimentary social structure. Case studies in “less” social species may provide important evidence for a better understanding of sex-biased dispersal.