SEARCH

SEARCH BY CITATION

References

  • Aarssen, L. W., and D. R. Taylor. 1992. Fecundity allocation in herbaceous plants. Oikos 65:225232.
  • Angelini, R., and C. L. Moloney. 2007. Fisheries, ecology and modelling: an historical perspective. Panam. J. Aquat. Sci. 2:7585.
  • Benton, T. G. 2007. Managing farming's footprint on biodiversity. Science 315:341342.
  • Caswell, H. 2001. Matrix Population Models. Sinauer Associates Inc, Sunderland, MA.
  • Clucas, R. 2011. Long-term population trends of Sooty Shearwater (Puffinus griseus) revealed by hunt success. Ecol. Appl. 21:13081326.
  • COP 10. 2010. Decision X/17. Consolidated update of the Global Strategy for Plant Conservation. 20112020.
  • Crone, E. E., E. S. Menges, M. M. Ellis, T. Bell, P. Bierzychudek, J. Ehrlén, et al. 2011. How do plant ecologists use matrix population models? Ecol. Lett. 14:18.
  • Dahlgren, J. P., and J. Ehrlén. 2011. Incorporating environmental change over succession in an integral projection model of population dynamics of a forest herb. Oikos 120:11831190.
  • Doak, D. F., and W. Morris. 1999. Detecting population-level consequences of ongoing environmental change without long-term monitoring. Ecology 80:15371551.
  • Easterling, M. R., S. P. Ellner, and P. M. Dixon. 2000. Size-specific sensitivity: applying a new structured population model. Ecology 81:694708.
  • Ellner, S. P. 2012. Comments on: inference for size demography from point pattern data using integral projection models. J. Agric. Biol. Environ. Stat. 17:682689.
  • Ellner, S. P., and M. Rees. 2007. Stochastic stable population growth in integral projection models: theory and application. J. Math. Biol. 54:227256.
  • Fieberg, J., and S. P. Ellner. 2001. Stochastic matrix models for conservation and management: a comparative review of methods. Ecol. Lett. 4:244266.
  • Fournier, D. A., J. Hampton, and J. R. Sibert. 1998. MULTIFAN-CL: a length-based, age-structured model for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Can. J. Fish. Aquat. Sci. 55:21052116.
  • Fournier, D. A., H. J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M. N. Maunder, et al. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233249.
  • Ghosh, S., A. E. Gelfand, and J. S. Clark. 2012. Inference for size demography from point pattern data using integral projection models. J. Agric. Biol. Environ. Stat. 17:641677.
  • Godínez-Álvarez, H., T. Valverde, and P. Ortega-Baes. 2003. Demographic trends in the Cactaceae. Bot. Rev. 69:173203.
  • González, E. J., M. Rees, and C. Martorell. 2012. Identifying the demographic processes relevant for species conservation in human-impacted areas: does the model matter?. Oecologia.
  • Haller, S. 2000. A prudential argument for precaution under uncertainty and high risk. Ethics Environ. 5:175189.
  • Harper, J. L., and J. White. 1974. The demography of plants. Annu. Rev. Ecol. Syst. 5:419463.
  • Haysson, V., A. van Tienhoven, and A. van Tienhoven. 1993. P. 1030 in Asdell's Patterns of Mammallian Reproduction: a Compendium of Species-specific Data. Cornell University Press, Ithaca.
  • Heller, N. E., and E. S. Zavaleta. 2009. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142:1432.
  • Hernández, H. M., and H. Godínez-Álvarez. 1994. Contribución al conocimiento de las cactáceas mexicanas amenazadas. Acta Bot. Mex. 26:3352.
  • Hilborn, R. R. 2012. The evolution of quantitative marine fisheries management 1985–2010. Nat. Resour. Model. 25:122144.
  • Hobbie, J. E., S. R. Carpenter, N. B. Grimm, J. R. Gosz, and T. R. Seastedt. 2003. The US long term ecological research program. Bioscience 53:2132.
  • Holmes, E. E., and A. E. York. 2003. Using age structure to detect impacts on threatened populations: a case study with Steller sea lions. Conserv. Biol. 17:17941806.
  • Koons, D. N., J. B. Grand, B. Zinner, and R. F. Rockwell. 2005. Transient population dynamics: relations to life history and initial population state. Ecol. Model. 185:283297.
  • Kroeker, K. J., R. L. Kordas, R. N. Crim, and G. G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13:14191434.
  • Martorell, C., and E. M. Peters. 2009. Disturbance-response analysis: a method for rapid assessment of the threat to species in disturbed areas. Conserv. Biol. 23:377387.
  • Martorell, C., P. P. Garcillán, and F. Casillas. 2012. Ruderality in extreme-desert cacti? Population effects of chronic anthropogenic disturbance on Echinocereus lindsayi. Popul. Ecol. 54:335346.
  • Matthews, J. A., and R. J. Whittaker. 1987. Vegetation succession on the Storbreen glacier foreland, Jotunheimen, Norway: a review. Arct. Alp. Res. 19:385395.
  • Maury, O., B. Faugeras, and V. Restrepo. 2005. FASST: a fully age-size and space-time structured statistical model for the assessment of tuna populations. Collect. Vol. Sci. Pap. ICCAT 57:206217.
  • McAuliffe, J. R., P. C. Sundt, A. Valiente-Banuet, A. Casas, and J. L. Viveros. 2001. Pre-columbian soil erosion, persistent ecological changes, and collapse of a subsistence agricultural economy in the semi-arid Tehuacán Valley, Mexico's ‘Cradle of Maize’. J. Arid Environ. 47:4775.
  • Mori, A. S., E. Mizumachi, and A. Komiyama. 2007. Roles of disturbance and demographic non-equilibrium in species coexistence, inferred from 25-year dynamics of a late-successional old-growth subalpine forest. For. Ecol. Manage. 241:7483.
  • Myung, I. J. 2003. Tutorial on maximum likelihood estimation. J. Math. Psychol. 47:90100.
  • Ortega-Baes, P., S. Sühring, J. Sajama, E. Sotola, M. Alonso-Pedano, S. Bravo, et al. 2010. Diversity and conservation in the cactus family. Pp. 157173 in K. G. Ramawat, ed. Desert Plants. Springer-Verlag, Berlin Heidelberg.
  • Parr, T. W., A. R. J. Sier, R. W. Battarbee, A. Mackay, and J. Burgess. 2003. Detecting environmental change: science and society—perspectives on long-term research and monitoring in the 21st century. Sci. Total Environ. 310:18.
  • Pereira, H. M., P. W. Leadley, V. Proenca, R. Alkemade, J. P. W. Scharlemann, J. F. Fernandez-Manjarres, et al. 2010. Scenarios for global biodiversity in the 21st century. Science 330:14961501.
  • Pickett, S. T. A. 1989. Space-for-time substitution as an alternative to long-term studies. Pp. 110135 in G. E. Likens, ed. Long-term studies in ecology: approaches and alternatives. Springer-Verlag, New York.
  • Punt, A. E., and R. R. Hilborn. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish Biol. Fisheries 7:3563.
  • Quinn, T. J., II. 2003. Ruminations on the development and future of population dynamics models in fisheries. Nat. Resour. Model. 16:341392.
  • Schwinning, S., O. E. Sala, M. E. Loik, and J. R. Ehleringer. 2004. Thresholds, memory, and seasonality: understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141:191193.
  • Singh, S. P. 1998. Chronic disturbance, a principal cause of environmental degradation in developing countries. Environ. Conserv. 25:12.
  • Ureta, C., and C. Martorell. 2009. Identifying the impacts of chronic anthropogenic disturbance on two threatened cacti to provide guidelines for population-dynamics restoration. Biol. Conserv. 142:19922001.
  • U.S. EPA. 2002. Methods for evaluating wetland condition: land-use characterization for nutrient and sediment risk assessment. Office of Water, U.S. Environmental Protection Agency, Washington, DC.
  • Wake, D. B. 2012. Facing extinction in real time. Science 335:10521053.
  • Waters, T. F. 1999. Long-term trout production dynamics in Valley Creek, Minnesota. Trans. Am. Fish. Soc. 128:11511162.
  • Weiner, J., L. G. Campbell, J. Pino, and L. Echarte. 2009. The allometry of reproduction within plant populations. J. Ecol. 97:12201233.
  • Wiegand, K., D. Ward, H. H. Thulke, and F. Jeltsch. 2000. From snapshot information to long-term population dynamics of Acacias by a simulation model. Plant Ecol. 150:97114.