SEARCH

SEARCH BY CITATION

References

  • Akhter, A., M. S. H. Khan, H. Egashira, K. Tawaraya, I. M. Rao, P. Wenzl, et al. 2009. Greater contribution of low-nutrient tolerance to sorghum and maize growth under combined stress conditions with high aluminum and low nutrients in solution culture simulating the nutrient status of tropical soils. Soil Sci. Plant Nutr. 55:394406.
  • Bussell, J. S., D. Gwynn-Jones, G. W. Griffith, and J. Scullion. 2012. Above- and below-ground responses of Calamagrostis purpurea to UV-B radiation and elevated CO2 under phosphorus limitation. Physiol. Plant. 145:619628.
  • Chen, F. J., G. Wu, F. Ge, M. N. Parajulee, and R. B. Shrestha. 2005. Effects of elevated CO2 and transgenic Bt cotton on plant chemistry, performance, and feeding of an insect herbivore, the cotton bollworm. Entomol. Exp. Appl. 115:341350.
  • Delhaize, E., P. R. Ryan, and P. J. Randall. 1993. Aluminum tolerance in wheat (Triticum aestivum L.). II. Aluminum-stimulated excretion of malic acid from root apices. Plant Physiol. 103:695702.
  • Guo, J. H., X. J. Liu, Y. Zhang, J. L. Shen, W. X. Han, W. F. Zhang, et al. 2010. Significant acidification in major Chinese croplands. Science 327:10081010.
  • Haase, S., A. Rothe, A. Kania, J. Wasaki, V. Romheld, C. Engels, et al. 2008. Responses to iron limitation in Hordeum vlugare L. as affected by the atmospheric CO2 concentration. J. Environ. Qual. 37:12541262.
  • Hagedorn, F., W. Landolt, D. Tarjan, P. Egli, and J. B. Bucher. 2002. Elevated CO2 influences nutrient availability in young beech-spruce communities on two soil types. Oecologia 132:109117.
  • IPCC. 2007. IPCC WGI fourth assessment report. Climatic change 2007: the physical science basis. intergovernmental panel on climate change, Geneva.
  • Jia, Y., S. Tang, R. Wang, X. Ju, Y. Ding, S. Tu, et al. 2010. Effects of elevated CO2 on growth, photosynthesis, elemental composition, antioxidant level, and phytochelatin concentration in Lolium mutiform and Lolium perenne under Cd stress. J. Hazard. Mater. 180:384394.
  • Jin, C. W., S. T. Du, W. W. Chen, G. X. Li, Y. S. Zhang, and S. J. Zheng. 2009. Elevated carbon dioxide improves plant iron nutrition through enhancing the iron- deficiency-induced responses under iron-limited conditions in tomato. Plant Physiol. 150:272280.
  • Jin, J., C. X. Tang, R. Armstrong, C. Butterly, and P. Sale. 2012. Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant Soil. doi: 10.1007/s11104-012-1516-9.
  • Khan, M. S. H., K. Tawaraya, H. Sekimoto, H. Koyama, Y. Kobayashi, T. Murayama, et al. 2009. Relative abundance of Δ5-sterols in plasma membrane lipids or root-tip cells correlates with aluminum tolerance of rice. Physiol. Plant. 135:7383.
  • Kirschbaum, M. U. F. 2011. Does enhanced photosynthesis enhance growth? Lessons learned from CO2 enhancement studies. Plant Physiol. 155:117124.
  • Kochian, L. V., O. A. Hoekenga, and M. A. Pineros. 2004. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorus efficiency. Annu. Rev. Plant Biol. 55:459493.
  • Kochian, L. V., M. A. Pineros, and O. A. Hoekenga. 2005. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175194.
  • Korner, C. 2006. Plant CO2 responses: an issue of definition, time and resource supply. New Phytol. 172:393411.
  • Lenka, N. K., and R. Lal. 2012. Soil-related constraints to the carbon dioxide fertilization effect. Crit. Rev. Plant Sci. 31:342357.
  • Li, B., Y. B. Ma, M. J. Mclaughlin, J. K. Kirby, G. Cozens, and J. F. Liu. 2010. Influences of soil properties and leaching on copper toxicity to barley root elongation. Environ. Toxicol. Chem. 29:835842.
  • Long, S. P., E. A. Ainsworth, A. Rogers, and D. R. Ort. 2004. Rising atmospheric carbon dioxide: plants face the future. Annu. Rev. Plant Biol. 55:591682.
  • Lynch, J. P., and S. B. St.Clair. 2004. Mineral stress: the missing link in understanding how global climate change will affect plants in real world soils. Field Crops Res. 90:101115.
  • Ma, J. F., P. R. Ryan, and E. Delhaize. 2001. Aluminum tolerance in plants and the complexing role of organic acids. Trends Plant Sci. 6:273278.
  • May, H. M., and D. K. Nordstrom. 1991. Assessing the solubilities and reaction kinetics of aluminous minerals in soils. Pp. 125148 in B. Ulrich and M. E. Sumner, eds. Soil acidity. Springer Verlag, Berlin, Germany.
  • Mishra, S., S. A. Heckathorn, and J. M. Frantz. 2012. Elevated CO2 affects plant responses to variation in boron availability. Plant Soil 350:117130.
  • Niu, Y. F., R. S. Chai, H. F. Dong, H. Wang, C. X. Tang, and Y. S. Zhang. 2013. Effect of elevated CO2 on phosphorus nutrition of phosphate-deficient Arabidopsis thaliana (L.) Heynh under different nitrogen forms. J. Exp. Bot. 64:355367.
  • Phillips, R. P., E. S. Bernhardt, and W. H. Schlesinger. 2009. Elevated CO2 increases root exudation from loblolly pine (Pinus taeda)-mediated response. Tree Physiol. 29:15131523.
  • Poorter, H. 1998. Do slow-growing species and nutrient-stressed plants respond relatively strongly to elevated CO2? Glob. Change Biol. 4:693697.
  • Poorter, H., and M. Pérez-Soba. 2001. The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129:120.
  • Rangel, A. F., I. M. Rao, and W. J. Horst. 2007. Spatial aluminum sensitivity of root apices of two common bean (Phaseolus vulgaris L.) genotypes with contrasting aluminum resistance. J. Exp. Bot. 58:38953904.
  • Reich, P. B., S. E. Hobbie, T. Lee, D. S. Ellsworth, J. B. West, D. Tilman, et al. 2006. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature 440:922925.
  • Rengel, Z., and W. H. Zhang. 2003. Role of dynamics of intracellular calcium in aluminum toxicity syndrome. New Phytol. 159:295314.
  • Ryan, P. R., J. M. DiTomaso, and L. V. Kochian. 1993. Aluminum toxicity in roots: an investigation of spatial sensitivity and the role of the root cap. J. Exp. Bot. 44:437446.
  • Ryan, P. R., E. Delhaize, and P. J. Randall. 1995. Malate efflux from root apices and tolerance to aluminum are highly correlated in wheat. Aust. J. Plant Physiol. 22:531536.
  • Ryan, P. R., E. Delhaize, and D. L. Jones. 2001. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52:527560.
  • Ryan, P. R., S. D. Tyerman, T. Sasaki, T. Furuichi, Y. Yamamoto, W. H. Zhang, et al. 2011. The identification of aluminum-resistance genes provides opportunities for enhancing crop production on acid soils. J. Exp. Bot. 62:920.
  • Sicher, R. C. 2009. Interactive effect of inorganic phosphate nutrition and carbon dioxide enrichment on assimilate portioning in barley roots. Physiol. Plant. 123:219226.
  • Sivaguru, M., and W. J. Horst. 1998. The distal part of the transition zone is the most aluminum-sensitive apical root zone of maize. Plant Physiol. 116:155163.
  • Sun, Y. C., H. F. Cao, J. Yin, L. Kang, and F. Ge. 2010. Elevated CO2 changes the interactions between nematode and tomato genotypes differing in the JA pathway. Plant, Cell Environ. 33:729739.
  • Tang, C., and Z. Rengel. 2003. Role of plant cation/anion uptake ratio in soil acidification. Pp. 5781 in Z. Rengel, ed. Handbook of soil acidity. Mzrcel Dekker, New York, NY.
  • Wasaki, J., A. Rothe, A. Kania, G. Neumann, V. Romheld, T. Shinano, et al. 2005. Root exudation, phosphorus acquisition, and microbial diversity in the rhizosphere of white lupin as affected by phosphorus supply and atmospheric carbon dioxide concentration. J. Environ. Qual. 34:21572166.
  • Watt, M., and J. R. Evan. 1999. Linking development and determinacy with organic acid efflux from proteoid roots of white lupin grown with low phosphorus and ambient or elevated atmospheric CO2 concentration. Plant Physiol. 120:705716.
  • Zhang, W. H., P. R. Ryan, and S. D. Tyerman. 2001. Malate-permeable channels and cation channels activated by aluminum in the apical cells of wheat root roots. Plant Physiol. 125:14591472.