Evidence for parallel adaptation to climate across the natural range of Arabidopsis thaliana



Frank W. Stearns, Department of Biology, Biology-Psychology Building, University of Maryland, College Park, MD 20742. Tel: 301 405-1640; Fax: 301 314-9358; E-mail: fstearns@umd.edu


How organisms adapt to different climate habitats is a key question in evolutionary ecology and biological conservation. Species distributions are often determined by climate suitability. Consequently, the anthropogenic impact on earth's climate is of key concern to conservation efforts because of our relatively poor understanding of the ability of populations to track and evolve to climate change. Here, we investigate the ability of Arabidopsis thaliana to occupy climate space by quantifying the extent to which different climate regimes are accessible to different A. thaliana genotypes using publicly available data from a large-scale genotyping project and from a worldwide climate database. The genetic distance calculated from 149 single-nucleotide polymorphisms (SNPs) among 60 lineages of A. thaliana was compared to the corresponding climate distance among collection localities calculated from nine different climatic factors. A. thaliana was found to be highly labile when adapting to novel climate space, suggesting that populations may experience few constraints when adapting to changing climates. Our results also provide evidence of a parallel or convergent evolution on the molecular level supporting recent generalizations regarding the genetics of adaptation.