SEARCH

SEARCH BY CITATION

References

  • Akinci, S., and D. M. Lösel. 2012. Plant water-stress response mechanisms. Pp. 1542 in I. M. M. Rahman, H. Hasegawa, eds. Water stress. InTech, Rijeka, Croatia. Available at http://www.intechopen.com/books/water-stress/plant-water-stress-response-mechanisms (Accessed 11 March 2013).
  • Anttonen, S., R. Piispanen, J. Ovaska, P. Mutikainen, P. Saranpää, and E. Vapaavuori. 2002. Effects of defoliation on growth, biomass allocation, and wood properties of Betula pendula clones grown at different nutrient levels. Can. J. For. Res. 32:498508.
  • Aphalo, P. J., M. Lahti, T. Lehto, T. Repo, A. Rummukainen, H. Mannerkoski, et al. 2006. Responses of silver birch saplings to low soil temperature. Silva Fenn. 40:429442.
  • Atkin, O. K., E. J. Edwards, and B. R. Loveys. 2000. Response of root respiration to changes in temperature and its relevance to global warming. New Phytol. 147:141154.
  • Augé, R. M., A. J. W. Stodola, and D. M. Gealy. 1990. Turgor maintenance in Rosa rugosa grown at three levels of nitrogen and subjected to drought. J. Environ. Horticulture 8:108112.
  • Barbaroux, C., N. Bréda, and E. Dufrêne. 2003. Distribution of above-ground and below-ground carbohydrate reserves in adult trees of two contrasting broad-leaved species (Quercus petraea and Fagus sylvatica). New Phytol. 157:605615.
  • Barry, K. M., A. Quentin, A. Eyles, and E. A. Pinkard. 2012. Consequences of resource limitation for recovery from repeated defoliation in Eucalyptus globulus Labilladière. Tree Physiol. 32:2435.
  • Beutler, H.-O., G. Michal, and G. Beistingl. 1978. Enzymatische Analyse von komplexen Kohlenhydratgemischen. Deuts. Lebensmitt. Rundsch. 74:431434.
  • Bloom, A. J., F. S. Chapin, and H. A. Mooney. 1985. Resource limitations in plants – an economic analogy. Annu. Rev. Ecol. Syst. 16:363392.
  • Carter, T., I. Bärlund, S. Fronzek, S. Kankaanpää, J. Kaivo-oja, J. Luukkanen, et al. 2002. The FINSKEN global change scenarios. Pp. 2740 in J. Käyhkö, L. Talve, eds. Understanding the global system. The Finnish perspective. Painosalama, Turku.
  • Collin, P., D. Epron, B. Alaoui-Sossé, and P. M. Badot. 2000. Growth responses of common ash seedlings (Fraxinus excelsior L.) to total and partial defoliation. Ann. Bot. 85:317323.
  • Dijkstra, F. A., E. Pendall, J. A. Morgan, D. Blumenthal, Y. Carrillo, D. LeCain, et al. 2012. Climate change alters stoichiometry of phosphorus and nitrogen in a semiarid grassland. New Phytol. 196:807815.
  • Drake, J. E., P. C. Stoy, R. B. Jackson, and E. H. DeLucia. 2008. Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization. Plant, Cell Environ. 31:16631672.
  • Edwards, N. T., and R. J. Norby. 1999. Below-ground respiratory responses of sugar maple and red maple saplings to atmospheric CO2 enrichment and elevated air temperature. Plant Soil 206:8597.
  • El Zein, R., P. Maillard, N. Bréda, J. Marchand, P. Montpied, and D. Gérant. 2011. Seasonal changes of C and N non-structural compounds in the stem sapwood of adult sessile oak and beech trees. Tree Physiol. 31:843854.
  • Eyles, A., E. A. Pinkard, and C. Mohammed. 2009. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiol. 29:753764.
  • Fiscus, E. L. 1975. The interaction between osmotic- and pressure-induced water flow in plant roots. Plant Physiol. 55:917922.
  • Frost, C. J., and M. D. Hunter. 2008. Herbivore-induced shifts in carbon and nitrogen allocation in red oak seedlings. New Phytol. 178:835845.
  • Gaugher, C., S. Gougeon, Y. Mauffette, and C. Messier. 2005. Seasonal variation in biomass and carbohydrate partitioning of understory sugar maple (Acer saccharum) and yellow birch (Betula alleghaniensis) seedlings. Tree Physiol. 25:93100.
  • Gibson, L. J. 2012. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 9:27492766.
  • Hammond, J. P., and P. J. White. 2008. Sugar signaling in root responses to low phosphorus availability. Plant Physiol. 156:10331040.
  • Haynes, B. T., and S. T. Gower. 1995. Belowground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiol. 15:317325.
  • Helmisaari, H.-S., A. Saarsalmi, and M. Kukkola. 2009. Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland. Plant Soil 314:121132.
  • Henriksson, J., E. Haukioja, and K. Ruohomäki. 1999. Impact of leaf damage on growth of mountain birch shoots. New Phytol. 142:469474.
  • Hole, L., and M. Engardt. 2008. Climate change impact on atmospheric nitrogen deposition in northwestern Europe: a model study. Ambio 37:917.
  • Hoogesteger, J., and P. S. Karlsson. 1992. Effects of defoliation on radial stem growth and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa). Funct. Ecol. 6:317323.
  • Houle, D., A. Bouffard, L. Duchesne, T. Logan, and R. Harvey. 2012. Projections of future soil temperature and water content for three southern Quebec forested sites. J. Clim. 25:76907701.
  • Huttunen, L., P. Niemelä, H. Peltola, S. Heiska, M. Rousi, and S. Kellomäki. 2007. Is a defoliated silver birch seedling able to overcompensate the growth under changing climate? Environ. Exp. Bot. 60:227238.
  • Huttunen, L., P. Niemelä, R. Julkunen-Tiitto, S. Heiska, R. Tegelberg, M. Rousi, et al. 2008. Does defoliation induce chemical and morphological defenses in the leaves of silver birch seedlings under changing climate? Chemoecology 18:8598.
  • Huttunen, L., P. Niemelä, V. Ossipov, R. Rousi, and T. Klemola. 2012. Do warmer growing seasons ameliorate the recovery of mountain birches after winter moth outbreak? Trees Struct. Funct. 26:809819.
  • Ingestad, T., and A.-B. Lund. 1979. Nitrogen stress in birch seedlings. I. Growth technique and growth. Physiol. Plant. 45:137148.
  • Jepsen, J. U., L. Kapari, S. B. Hagen, T. Schott, O. P. L. Vindstad, A. C. Nilssen, et al. 2011. Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Glob. Change Biol. 17:20712083.
  • Kaitaniemi, P., S. Neuvonen, and T. Nyyssönen. 1999. Effects of cumulative defoliations on growth, reproduction, and insect resistance in mountain birch. Ecology 80:524532.
  • Kasuga, J., K. Arakawa, and S. Fujikawa. 2007. High accumulation of soluble sugars in deep supercooling Japanese white birch xylem parenchyma cells. New Phytol. 174:569579.
  • Keel, S. G., and C. Schädel. 2010. Expanding leaves of mature deciduous forest trees rapidly become autotrophic. Tree Physiol. 30:12531259.
  • Kellomäki, S., K.-Y. Wang, and M. Lemettinen. 2000. Controlled environment chambers for investigating tree response to elevated CO2 and temperature under boreal conditions. Photosynthetica 38:6981.
  • Kleczewski, N. M., D. A. Herms, and P. Bonello. 2012. Nutrient and water availability alter belowground patterns of biomass allocation, carbon partitioning, and ectomycorrhizal abundance in Betula nigra. Trees Struct. Funct. 26:525533.
  • Kobe, R. K., M. Iyer, and M. B. Walters. 2010. Optimal partitioning theory revisited: nonstructural carbohydrates dominate root mass responses to nitrogen. Ecology 91:166179.
  • Kuokkanen, K., P. Niemelä, J. Matala, R. Julkunen-Tiitto, J. Heinonen, M. Rousi, et al. 2004. The effects of elevated CO2 and temperature on the resistance of winter-dormant birch seedlings (Betula pendula) to hares and voles. Glob. Change Biol. 10:15041512.
  • Kurz, W. A., C. C. Dymond, G. Stinson, G. J. Rampley, E. T. Neilson, A. L. Carroll, et al. 2008. Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987990.
  • Lachke, A. 2006. Xylitol: a sweetener with special qualities. Reson. J. Sci. Educ. 11:9092.
  • Laitinen, J., M. Rousi, H. Sikanen, and J. Tahvanainen. 2004. Juvenile growth performance of local and exotic birches in southern Finland. Eurasian J. Forest Res. 7:3342.
  • Landhäusser, S. M., and V. J. Lieffers. 2003. Seasonal changes in carbohydrate reserves in mature northern Populus tremuloides clones. Trees Struct. Funct. 17:471476.
  • Landhäusser, S. M., and V. J. Lieffers. 2012. Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees Struct. Funct. 26:653661.
  • Li, M.-H., W.-F. Xiao, S.-G. Wang, G.-W. Cheng, P. Cherubini, X.-H. Cai, et al. 2008. Mobile carbohydrates in Himalayan treeline trees I. Evidence for carbon gain limitation but not for growth limitation. Tree Physiol. 28:12871296.
  • Lukac, M., and D. L. Godbold. 2011. P. 268 in Soil ecology in northern forests: a belowground view of a changing world. Cambridge Univ. Press, New York, NY.
  • Mäenpää, M., V. Ossipov, S. Kontunen-Soppela, M. Keinänen, M. Rousi, and E. Oksanen. 2013. Biochemical and growth acclimation of birch to night temperatures: genotypic similarities and differences. Plant Biol. 15:3643.
  • Markkola, A., K. Kuikka, P. Rautio, E. Härmä, M. Roitto, and J. Tuomi. 2004. Defoliation increases carbon limitations in ectomycorrhizal symbiosis of Betula pubescens. Oecologia 140:234240.
  • Maschinski, J., and T. G. Whitham. 1989. The continuum of plant responses to herbivory: the influence of plant association, nutrient availability, and timing. Am. Nat. 134:119.
  • Niinemets, Ü. 1999. Energy requirement for foliage formation is not constant along canopy light gradients in temperate deciduous trees. New Phytol. 141:459470.
  • Nilsen, J., and F. E. Wielgolaski. 2001. Effects of fertilization and watering on morphology in young mountain birch plants of different provenances – a pilot study. Pp. 7176 in F. E. Wielgolaski, ed. Nordic mountain birch ecosystems. Man and the biosphere series. Vol. 27. UNESCO, Paris and Parthenon Publishing Group, New York and London, Carnforth.
  • Olszyk, D. M., M. G. Johnson, D. T. Tingey, P. T. Rygiewicz, C. Wise, E. VanEss, et al. 2003. Whole-seedling biomass allocation, leaf area, and tissue chemistry for Douglas-fir exposed to elevated CO2 and temperature for 4 years. Can. J. For. Res. 33:269278.
  • Palacio, S., E. Paterson, A. Sim, A. J. Hester, and P. Millard. 2011. Browsing affects intra-ring carbon allocation in species with contrasting wood anatomy. Tree Physiol. 31:150159.
  • Perry, T. O. 1971. Dormancy of trees in winter. Science 171:2936.
  • Pregitzer, K. S., J. S. King, A. J. Burton, and S. E. Brown. 2000. Responses of tree fine roots to temperature. New Phytol. 147:105115.
  • Pumpanen, J., J. Heinonsalo, T. Rasilo, J. Villemot, and H. Ilvesniemi. 2012. The effects of soil and air temperature on CO2 exchange and net biomass accumulation in Norway spruce, Scots pine and silver birch seedlings. Tree Physiol. 32:724736.
  • Quentin, A. G., A. P. O'Grady, C. L. Beadle, D. Worledge, and E. A. Pinkard. 2011. Responses of transpiration and canopy conductance to partial defoliation of Eucalyptus globulus trees. Agric. For. Meteorol. 151:356364.
  • Regier, N., S. Streb, S. C. Zeeman, and B. Frey. 2010. Seasonal changes in starch and sugar content of poplar (Populus deltoides × nigra cv. Dorskamp) and the impact of stem girdling on carbohydrate allocation to roots. Tree Physiol. 30:979987.
  • Sala, A., D. R. Woodruff, and F. C. Meinzer. 2012. Carbon dynamics in trees: feast or famine? Tree Physiol. 32:764775.
  • Saravesi, K., A. Markkola, P. Rautio, M. Roitto, and J. Tuomi. 2008. Defoliation causes parallel temporal responses in a host tree and its fungal symbionts. Oecologia 156:117123.
  • Shi, P., C. Körner, and G. Hoch. 2006. End of season carbon supply status of woody species near the treeline in western China. Basic Appl. Ecol. 7:370377.
  • Soja, A. J., N. M. Tchebakova, N. H. F. French, M. D. Flannigan, H. H. Shugart, B. J. Stocks, et al. 2007. Climate-induced boreal forest change: predictions versus current observations. Global Planet. Change 56:274296.
  • Suriyagoda, L. D. B., M. H. Ryan, M. Renton, and H. Lambers. 2012. Adaptive shoot and root responses collectively enhance growth at optimum temperature and limited phosphorus supply of three herbaceous legume species. Ann. Bot. 110:959968.
  • Thomas, F. M., G. Meyer, and M. Popp. 2004. Effects of defoliation on the frost hardiness and the concentrations of soluble sugars and cyclitols in the bark tissue of pedunculate oak (Quercus robur L.). Ann. For. Sci. 61:455463.
  • Tilman, D. 1990. Constraints and tradeoffs: toward a predictive theory of competition and succession. Oikos 8:315.
  • Tuomi, J., P. Niemelä, I. Jussila, T. Vuorisalo, and V. Jormalainen. 1989. Delayed bud break: a defensive response of mountain birch to early-season defoliation? Oikos 54:8791.
  • Turnbull, T. L., M. A. Adams, and C. R. Warren. 2007. Increased photosynthesis following partial defoliation of field-grown Eucalyptus globulus seedlings is not caused by increased leaf nitrogen. Tree Physiol. 27:14811492.
  • Valjakka, M., E.-M. Luomala, J. Kangasjärvi, and E. Vapaavuori. 1999. Expression of photosynthesis- and senescence-related genes during leaf development and senescence in silver birch (Betula pendula) seedlings. Physiol. Plant. 106:302309.
  • Verburg, P. S. J. 2005. Soil solution and extractable soil nitrogen response to climate change in two boreal forest ecosystems. Biol. Fertil. Soils 41:257261.
  • Vogt, K. A., and J. Bloomfield. 1991. Root turnover and senescence. Pp. 287306 in Y. Waisel, A. Eschel, and U. Kafkafi, eds. Plant roots: the hidden half. Marcel Dekker, Inc., New York, NY.
  • Wargo, P. M. 1978. Insects have defoliated my tree – now what's going to happen? J. Arboric. 4:169175.
  • Wargo, P. M. 1991. Remarks on the physiological effects of defoliation on sugar maple and some impacts on syrup production. Pp. 241251 in B. L. Parker, M. Skinner, T. Lewis, eds. Towards understanding Thysanoptera. Proceedings of the International Conference on Thrips. U.S. Department of Agriculture, Forest Service. General Technical Report NE-147, Radnor, PA.
  • Wayne, P. M., E. G. Reekie, and F. A. Bazzaz. 1998. Elevated CO2 ameliorates birch response to high temperature and frost stress: implications for modeling climate-induced geographic range shifts. Oecologia 114:335342.
  • Willaume, M., and L. Pagès. 2011. Correlated responses of root growth and sugar concentrations to various defoliation treatments and rhythmic shoot growth in oak tree seedlings (Quercus pubescens). Ann. Bot. 107:653662.
  • Wind, J., S. Smeekens, and J. Hanson. 2010. Sucrose: metabolite and signaling molecule. Phytochemistry 71:16101614.
  • Wolf, A., M. V. Kozlov, and T. V. Callaghan. 2008. Impact of non-outbreak insect damage on vegetation in northern Europe will be greater than expected during a changing climate. Clim. Change 87:91106.
  • Wong, B. L., K. L. Baggett, and A. H. Rye. 2003. Seasonal patterns of reserve and soluble carbohydrates in mature sugar maple (Acer saccharum). Can. J. Bot. 81:780788.
  • Zhu, W.-Z., M. Cao, S.-G. Wang, W.-F. Xiao, and M.-H. Li. 2012. Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit. PLoS ONE 7:e34213.