SEARCH

SEARCH BY CITATION

References

  • Adams, J. M., and Y. J. Zhang. 2009. Is there more insect folivory in warmer temperate climates? A latitudinal comparison of insect folivory in eastern North America. J. Ecol. 97:933940.
  • Altermatt, F. 2010. Climatic warming increases voltinism in European butterflies and moths. Proc. R. Soc. Lond. B. Biol. Sci. 277:12811287.
  • Andrew, N. R., and L. Hughes. 2004. Species diversity and structure of phytophagous beetle assemblages along a latitudinal gradient: predicting the potential impacts of climate change. Ecol. Entomol. 29:527542.
  • Bale, J. S., and S. A. L. Hayward. 2010. Insect overwintering in a changing climate. J. Exp. Biol. 213:980994.
  • Baltensweiler, W., U. M. Weber, and P. Cherubini. 2008. Tracing the influence of larch-bud-moth insect outbreaks and weather conditions on larch tree-ring growth in Engadine (Switzerland). Oikos 117:161172.
  • Battisti, A., M. Stastny, S. Netherer, C. Robinet, A. Schopf, A. Roques, et al. 2005. Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecol. Appl. 15:20842096.
  • Berggren, Å., C. Björkman, H. Bylund, and M. P. Ayres. 2009. The distribution and abundance of animal populations in a climate of uncertainty. Oikos 118:11211126.
  • Berryman, A. A. 1987. The theory and classifications of outbreaks. Pp.327 in P. Barbosa, J. C. Schultz, eds. Insect outbreaks. Academic Press Inc., San Diego, CA.
  • Björkman, C., A. Berggren, and H. Bylund. 2011. Causes behind insect folivory patterns in latitudinal gradients. J. Ecol. 99:367369.
  • Bogenschütz, H. 1976. Studies on the influence of temperature on the development of Rhyacionia-buoliana (Lepidoptera; Tortricidae). Z. Pflanzenkr. Pflanzenschutz 83:2239.
  • Carter, D. J. 1984. Pest lepidoptera of Europe; with special reference to the British Isles. Dr. W. Junk Publishers, Dordrecht, the Netherland.
  • Csóka, G. 1996. Aszályos évek- fokozódó rovarkárok erdeinkben (Years of drought – increasing damage by forest insects). Növényvédelem 32:545551.
  • Csóka, G. 1997. Increased insect damage in Hungarian forests under drought impact. Biologia 52:14.
  • Cudmore, T. J., N. Björklund, A. L. Carroll, and B. S. Lindgren. 2010. Climate change and range expansion of an aggressive bark beetle: evidence of higher beetle reproduction in naive host tree populations. J. Appl. Ecol. 47:10361043.
  • Dhillon, M. K., and H. C. Sharma. 2009. Temperature influences the performance and effectiveness of field and laboratory strains of the ichneumonid parasitoid, Campoletis chlorideae. Biocontrol 54:743750.
  • Esper, J., U. Büntgen, D. C. Frank, D. Nievergelt, and A. Liebhold. 2007. 1200 years of regular outbreaks in alpine insects. Proc. R. Soc. Lond. B. Biol. Sci. 274:671679.
  • Hahn, D. A., and D. L. Denlinger. 2007. Meeting the energetic demands of insect diapause: nutrient storage and utilization. J. Insect Physiol. 53:760773.
  • Han, E. N., and E. Bauce. 1998. Timing of diapause initiation, metabolic changes and overwintering survival of the spruce budworm, Choristoneura fumiferana. Ecol. Entomol. 23:160167.
  • Hassell, M. P., J. H. Lawton, and R. M. May. 1976. Patterns of dynamical behaviour in single-species populations. J. Anim. Ecol. 45:471486.
  • Hirka, A., and G. Csóka 2006. Képes útmutató és kódjegyzék az erdővédelmi jelzőlapok kitöltéséhez (Guidelines and code list for forest damagage reports). Pp. 176. Hungarian Forest Research Institute, Budapest.
  • Hunter, A. F. 1991. Traits that distinguish outbreaking and nonoutbreaking macrolepidoptera feeding on northern hardwood trees. Oikos 60:275282.
  • Ims, R. A., and E. Fuglei. 2005. Trophic interaction cycles in tundra ecosystems and the impact of climate change. Bioscience 55:311322.
  • Jactel, H., J. Petit, M.-L. Desprez-Loustau, S. Delzon, D. Piou, A. Battisti, et al. 2012. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Change Biol. 18:267276.
  • Jepsen, J. U., S. B. Hagen, R. A. Ims, and N. G. Yoccoz. 2008. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion. J. Anim. Ecol. 77:257264.
  • Klapwijk, M. J., A. Battisti, M. P. Ayres, and S. Larsson 2012. Assessing the impact of climate change on outbreak potential. Pp. 429450 in P. Barbosa, J. C. Schultz, D. Letourneau, eds. Insect outbreaks revisited. Blackwell Publishing Ltd, Oxford, U.K.
  • Koricheva, J., S. Larsson, and E. Haukioja. 1998. Insect performance on experimentally stressed woody plants: a meta-analysis. Annu. Rev. Entomol. 43:195216.
  • Kruse, P. D., S. Toft, and K. D. Sunderland. 2008. Temperature and prey capture: opposite relationships in two predator taxa. Ecol. Entomol. 33:305312.
  • Laws, A. N., and G. E. Belovsky. 2010. How will species respond to climate change? Examining the effects of temperature and population density on an herbivorous insect. Environ. Entomol. 39:312319.
  • Liebhold, A., J. Elkinton, D. Williams, and R. M. Muzika. 2000. What causes outbreaks of the gypsy moth in North America? Popul. Ecol. 42:257266.
  • Marini, L., M. Ayres, A. Battisti, and M. Faccoli. 2012. Climate affects severity and altitudinal distribution of outbreaks in an eruptive bark beetle. Clim. Change 115:327341.
  • Martinat, P. J. 1987. The role of climatic variation and weather on forest insect outbreaks. Pp. 241268 in P. Barbosa, J. C. Schultz, eds. Insect outbreaks. Academic Press Inc, San Diego, CA.
  • Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, et al. 2006. European phenological response to climate change matches the warming pattern. Glob. Change Biol. 12:19691976.
  • Mészáros, Z., and C. Szabóky. 2005. A magyarországi nagylepkék gyakorlati albuma (Practical album of the Hungarian Macrolepidoptera). Agroumform, Budapest, Hungary.
  • Mészáros, Z., and C. Szabóky. 2012. A magyarországi nagylepkék gyakorlati albuma (Practical album of the Hungarian Macrolepidoptera). Szalkay József Magyar Lepkészeti Egyesület, Budapest, Hungary.
  • Meurisse, N., G. Hoch, A. Schopf, A. Battisti, and J.-C. Gregoire. 2012. Low temperature tolerance and starvation ability of the oak processionary moth: implications in a context of increasing epidemics. Agric. For. Entomol. 14:239250.
  • Miller, D. R., T. K. Mo, and W. E. Wallner. 1989. Influence of climate on gypsy-moth defoliation in southern New-England. Environ. Entomol. 18:646650.
  • Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37:637669.
  • Parmesan, C., and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:3742.
  • Parmesan, C., N. Ryrholm, C. Stefanescu, J. K. Hill, C. D. Thomas, H. Descimon, et al. 1999. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579583.
  • Pierce, G. J., M. B. Santos, C. Smeenk, A. Saveliev, and A. F. Zuur. 2007. Historical trends in the incidence of strandings of sperm whales (Physeter macrocephalus) on North Sea coasts: an association with positive temperature anomalies. Fish. Res. 87:219228.
  • Pöyry, J., R. Leinonen, G. Söderman, M. Nieminen, R. K. Heikkinen, and T. R. Carter. 2011. Climate-induced increase of moth multivoltinism in boreal regions. Glob. Ecol. Biogeogr. 20:289298.
  • Robertson, C., T. A. Nelson, D. E. Jelinski, M. A. Wulder, and B. Boots. 2009. Spatial-temporal analysis of species range expansion: the case of the mountain pine beetle, Dendroctonus ponderosae. J. Biogeogr. 36:14461458.
  • Saastamoinen, M., D. van der Sterren, N. Vastenhout, B. J. Zwaan, and P. M. Brakefield. 2010. Predictive adaptive responses: condition-dependent impact of adult nutrition and flight in the tropical butterfly Bicyclus anynana. Am. Nat. 176:686698.
  • Sinclair, R. J., and L. Hughes. 2008. Incidence of leaf mining in different vegetation types across rainfall, canopy cover and latitudinal gradients. Austral Ecol. 33:353360.
  • Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, et al. 2007. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Pp. 996. Intergovernmental panel on Climate Change, Cambridge, U.K.
  • Turchin, P. 2003. Complex population dynamics: a theoretical/emperical synthesis. Princeton University Press, Princeton, NJ.
  • Turchin, P., and A. D. Taylor. 1992. Complex dynamics in ecological time series. Ecology 73:289305.
  • Visser, M. E., and C. Both. 2006. Shifts in phenology due to global climate change: the need for a yardstick. Proc. R. Soc. Lond. B. Biol. Sci. 272:25612569.
  • Wagenhoff, E., and H. Veit. 2011. Five years of continuous Thaumetopoea processionea monitoring: tracing population dynamics in an arable landscape of South-Western Germany. Gesunde Pflanz. 63:5161.
  • Wallner, W. E. 1987. Factors affecting insect population dynamics: differences between outbreak and non-outbreak species. Annu. Rev. Entomol. 32:317340.
  • Walther, G.-R. 2010. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365:20192024.
  • Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, et al. 2002. Ecological responses to recent climate change. Nature 416:389395.
  • West, A. S. 1936. Winter Mortality of Larvae of the European Pine Shoot Moth, Rhyacionia buoliana Schiff., in Connecticut. Ann. Entomol. Soc. Am. 29:438448.
  • Wood, S. 2006. Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca Raton, FL.
  • Zuur, A. F., E. N. Ieno, and G. M. Smith 2007. Analysing ecological data. Springer, New York.
  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. 2009. Mixed effects models and extensions in ecology with R. Springer, New York, NY.