• Dioecy;
  • floral display;
  • reproductive phenology;
  • reproductive strategy;
  • resource allocation;
  • sex ratio.


Reproductive strategies, sexual selection, and their relationship with the phenotype of individuals are topics widely studied in animals, but this information is less abundant for plants. Variability in flowering phenology among individuals has direct impact on their fitness, but how reproductive phenology is affected by the size of the individuals needs further study. We quantified the flowering intensity, length, and reproductive synchronization of two sympatric dioecious Wild Nutmeg tree species (Virola, Myristicaceae) in the Brazilian Atlantic forest, and analyzed its relationships with tree size. Two distinct strategies in flowering timing and intensity were found between species (annual versus biennial flowering), and among individuals in the annual flowering species (extended versus peak flowering). Only for the annual flowering species the reproductive output is related to tree size and large trees present proportionally higher flower coverage, and lower synchronization than smaller ones. Flowering is massive and highly synchronized in the biennial species. Sex ratios are not different from 1:1 in the two species, and in the two segregated reproductive subgroups in the biennial flowering species. The biennial flowering at individual level is a novelty among reproductive patterns in plants, separating the population in two reproductive subgroups. A proportional increase in the reproductive output with size exists only for the annual flowering species. A biennial flowering can allow resource storage favouring massive flowering for all the individuals diluting their relationship with size.