SEARCH

SEARCH BY CITATION

References

  • Antibus, R. K., R. L. Sinsabaugh, and A. E. Linkins. 1992. Phosphatase activities and phosphorus uptake from inositol phosphate by ectomycorrhizal fungi. Can. J. Bot. 70:794801.
  • Bremner, J. M. and C. S. Mulvaney. 1982. Salicylic acid-thiosulphate modification of Kjeldahl method to include nitrate and nitrite. Pp. 621622 in A. C. Page, R. H. Miller and D. R. Keeney, eds. Agronomy 9: methods of soil analyses. Part 2. Chemical and microbiological properties. Soil Science Society of America, Madison, WI.
  • Condron, L. M., B. L. Turner, and B. J. Cade-Menun. 2005. The chemistry and dynamics of soil organic phosphorus. Pp. 87121 in J. T. Sims and A. N. Sharpley, eds. Phosphorus: agriculture and the environment. ASA-CSSA-SSSA, Madison, WI.
  • Criquet, S., E. Ferre, A. M. Farnet, and L. J. Petit. 2004. Annual dynamics of phosphatase activities in an evergreen oak litter: influence of biotic and abiotic factors. Soil Biol. Biochem. 36:11111118.
  • Cross, A. F. and W. H. Schlesinger. 2001. Biological and geochemical controls on phosphorus fractions in semiarid soils. Biogeochemistry 52:155172.
  • Felipe, M. R., J. M. Pozuelo, and A. M. Cintas. 1979. Acid phosphatase localization at the surface of young corn roots. Agrochemica 23:143151.
  • Feng, G., Y. C. Song, X. L. Li, and P. Christie. 2003. Contribution of arbuscular mycorrhizal fungi to utilization of organic sources of phosphorus by red clover in calcareous soil. Appl. Soil Ecol. 22:139148.
  • Fransson, A. M., I. M. Van Aarle, P. A. Olsson, and G. Tyler. 2003. Plantago lanceolata L. and Rumex acetosella L. differ in their utilisation of soil phosphorus fractions. Plant Soil 248:285295.
  • George, T. S., A. E. Richardson, P. A. Hadobas, and R. J. Simpson. 2004. Characterization of transgenic Trifolium subterraneum L. which expresses phy A and release extracellular phytase: growth and P nutrition in laboratory media and soil. Plant, Cell Environ. 27:13511361.
  • Harley, J. L. and E. L. Harley. 1987. A check-list of mycorrhiza in the British flora. New Phytol. 105:1102.
  • Harrison, A. F. 1987. Soil organic phosphorus: a review of world literature. CAB International, Wallingford, UK.
  • Hayes, J. E., A. E. Richardson, and R. J. Simpson. 2000. Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol. Fertil. Soils 32:279286.
  • Hulme, P. D. 2006. Red moss of Netherley site of special scientific interest: an ecohydrological study. Scottish Natural Heritage Commissioned Report No. 163B – Non-technical report (ROAME No. F02LF16).
  • Jayachandran, K., A. P. Schwab, and B. A. D. Hetrick. 1992. Mineralization of organic phosphorus by vesicular-arbuscular mycorrhizal fungi. Soil Biol. Biochem. 24:897903.
  • Johnson, D., J. R. Leake, and J. A. Lee. 1999. The effects of quantity and duration of simulated pollutant nitrogen deposition on root surface phosphatase activities in calcareous and acid grasslands: a bioassay approach. New Phytol. 141:433442.
  • Johnson, D., P. J. Vandenkoornhuyse, J. R. Leake, L. A. Gilbert, R. E. Booth, J. P. Grime, et al. 2004. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol. 161:503516.
  • Kroehler, C. J. and A. E. Linkins. 1988. The root surface phosphatase of Eriophorum vaginatum: effects of temperature, pH, substrate concentration and inorganic phosphorus. Plant Soil 105:310.
  • Leake, J. R. and W. Miles. 1996. Phosphodiesters as mycorrhizal P sources. I. Phosphodiesterase production and utilization of DNA as a phosphorus source by the ericoid mycorrhizal fungus Hymenoscyphusericae. New Phytol. 132:435443.
  • Li, M., M. Osaki, I. M. Rao, and T. Tadano. 1997. Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161169.
  • Macklon, A. E. S., S. J. Grayston, C. A. Shand, A. Sim, S. Sellars, and B. G. Ord. 1997. Uptake and transport of phosphorus by Agrostis capillaris seedlings from rapidly hydrolysed organic sources extracted from 32P-labelled bacterial cultures. Plant Soil 190:163167.
  • Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press, London, UK.
  • McKane, R. B., L. C. Johnson, G. R. Shaver, K. J. Nadelhoffer, E. B. Rastetter, B. Fry, et al. 2002. Resource-based niches provides a basis for plant species diversity and dominance in arctic tundra. Nature 415:6871.
  • Myers, M. D. and J. R. Leake. 1996. Phosphodiesters as mycorrhizal P sources. II. Ericoid mycorrhiza and the utilization of nuclei as a phosphorus and nitrogen sources by Vaccinium macrocarpon. New Phytol. 132:445451.
  • Phoenix, G. K., R. E. Booth, J. R. Leake, D. J. Read, J. P. Grime, and J. A. Lee. 2004. Simulated pollutant nitrogen deposition increases P demand and enhances root-surface phosphatase activities three plant functional types in a calcareous grassland. New Phytol. 161:279289.
  • Phuyal, M., R. R. E. Artz, L. Sheppard, I. Leith, and D. Johnson. 2007. Long-term nitrogen deposition increases phosphorus limitation of bryophytes in an ombrotrophic bog. Plant Ecol. 196:111121.
  • Playsted, C. W. S., M. E. Johnston, C. M. Ramage, D. G. Edwards, G. R. Cawthray, and H. Lambers. 2006. Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol. 170:491500.
  • Sahu, M. K., K. Sivakumar, and L. Kannan. 2007. Phosphate solubilising actinomycetes in the estuarine environment: an inventory. J. Environ. Biol. 28:795798.
  • Tabatabai, M. A. and J. M. Bremner. 1969. Use of p-nitrophenylphosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1:301307.
  • Tarafdar, J. C. and N. Claassen. 2003. Organic phosphorus utilization by wheat plants under sterile conditions. Biol. Fertil. Soils 39:2529.
  • Tisdale, S. L., W. L. Nelson, and J. D. Beaton. 1985. Pp. 189248. Soil fertility and fertilizers. Macmillan Publishing Company, New York, NY.
  • Trinder, C., R. Brooker, H. Davidson, and D. Robinson. 2012. Dynamic trajectories of growth and nitrogen capture by competing plants. New Phytol. 193:948958.
  • Turner, B. L. 2008. Resource partitioning for soil phosphorus: a hypothesis. J. Ecol. 96:698702.
  • Turner, B. L., I. D. McKelvie, and P. M. Haygarth. 2002a. Characterisation of water-extractable soil organic phosphorus by phosphatase hydrolysis. Soil Biol. Biochem. 34:2735.
  • Turner, B. L., M. J. Papházy, P. M. Haygarth, and I. D. McKelvie. 2002b. Inositol phosphates in the environment. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 357:449470.
  • Turner, B. L., B. J. Cade-Menun, and D. T. Westermann. 2003a. Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the western United States. Soil Sci. Soc. Am. J. 67:11681179.
  • Turner, B. L., N. Mahieu, and L. M. Condron. 2003b. Quantification of myo-inositol hexakisphosphate in alkaline soil extracts by solution 31P NMR spectroscopy and spectral deconvolution. Soil Sci. 168:469478.
  • Turner, B. L., R. Baxter, N. Mahieu, S. Sjögersten, and B. A. Whitton. 2004. Phosphorus compounds in subarctic Fennoscandian soils at the mountain birch (Betula pubescens) – tundra ecotone. Soil Biol. Biochem. 36:815823.
  • Venterink, H. O. 2011. Legumes have a higher root phosphatase activity than other forbs, particularly under low inorganic P and N supply. Plant Soil 347:137146.
  • Wassen, M. J., H. O. Venterink, and E. D. Lapshina. 2005. Endangered plants persist under phosphorus limitation. Nature 437:547550.
  • Watanabe, F. S. and S. R. Olsen. 1965. Test of an ascorbic acid method to get phosphorus in water and NaHCO3, extracts from soil. Soil Sci. Soc. Am. J. 29:677678.
  • Whigham, D., M. Pittek, K. H. Hofmockel, T. Jordan, and A. L. Pepin. 2002. Biomass and nutrient dynamics in restored wetlands on the outer coastal plain of Maryland, USA. Wetlands 22:562574.
  • Wyss, M., R. Brugger, A. Kronenberger, R. Remy, R. Fimbeld, G. Oesterhelt, et al. 1999. Biochemical characterization of fungal phytase (my-inositol hexakisphosphatephosphohydrolases), catalytic properties. Appl. Environ. Microbiol. 65:367373.