SEARCH

SEARCH BY CITATION

References

  • Amado, L. L., and J. M. Monserrat. 2010. Oxidative stress generation by microcystins in aquatic animals: why and how. Environ. Int. 36:226235.
  • Azzam, E. I. 2011. Exposure to low level environmental agents: the induction of hormesis. Mutat. Res. 726:8990.
  • Baud, A., R. M. Barthelemy, S. Nival, and M. Brunet. 2002. Formation of the gut in the two naupliar stages of Acartia clausi and Hemidiaptomus roubaui (Copepoda, Calanoida): comparative structural and ultrastructural aspects. Can. J. Zool. 80:232244.
  • Branch, T. E., B. M. DeJoseph, L. J. Ray, and C. A. Wagner. 2013. Impacts of ocean acidification on marine seafood. Trends Ecol. Evol. 28:178186.
  • Byrne, M., M. Ho, P. Selvakumaraswamy, H. D. Nguyen, S. A. Dworjanyn, and A. R. Davis. 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. Proceedings of the Royal Society 276:18831888.
  • Caldeira, K., and M. E., Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425:365.
  • Chinnery, F. E., and J. A. Williams. 2004. The influence of temperature and salinity on Acartia (Copepoda: Calanoida) nauplii survival. Mar. Biol., 145:733738.
  • Choi, J., H. Roche, and T. Caquet. 2000. Effects of physical (hypoxia, hyperoxia) and chemical (potassium dichromate, fenitrothion) stress on antioxidant enzyme activities in Chironomus riparius Mg. (Diptera, Chironomidae) larvae: potential biomarkers. Environ. Toxicol. Chem., 19:495500.
  • Dickson, A. G. 2010. The carbon dioxide system in seawater: equilibrium chemistry and measurements. Pp. 1740 in U. Riebesell, V. J. Fabry, L. Hansson and J. -P. Gattuso, eds. Guide to best practices for ocean acidification research and data reporting. Publications Office for the European Union, Luxembourg.
  • Fabry, V. J., B. A. Seibel, R. A. Feely, and J. C. Orr. 2008. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65:414432.
  • Fitzer, S. C., G. S. Caldwell, A. J. Close, A. S. Clare, R. C. Upstill-Goddard, and M. G. Bentley. 2012. Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation. J. Exp. Mar. Biol. Ecol. 418419:30–36.
  • Gao, K., and Y. Zheng. 2010. Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of coralline alga Corallina sessilis (Rhodophyta). Glob. Change Biol. 16:23882398.
  • Gorokhova, E. 2010. A single-step staining method to evaluate egg viability in zooplankton. Limnol. Oceanogr. Methods 8:414423.
  • Gorokhova, E., M. Löf, H. Halldorsson, M. Lindström, T. Elfwing, U. Tjärnlund, et al. 2010. Assessing differential response of Monoporeia affinis to hypoxia and contaminants using multiple biomarkers of oxidative stress. Aquat. Toxicol. 99:263274.
  • Gorokhova, E., M. Löf, M. Reutgard, M. Lindström, and B. Sundelin. 2013a. Exposure to contaminants exacerbates oxidative stress in amphipod Monoporeia affinis subjected to fluctuating hypoxia. Aquat. Toxicol. 127:4653.
  • Gorokhova, E., M. Lehtiniemi, and N. H. Motwani. 2013b. Trade-offs between predation risk and growth benefits in copepods Eurytemora affinis with contrasting pigmentation. PLoS ONE 8:e71385.
  • Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates. Pp. 2960 in W. L. Smith and M. H. Chanley, eds. Culture of Marine Invertebrate Animals. Plenum Press, New York.
  • Hallegraeff, G. M. 2010. Ocean climate change, phytoplankton community responses, and harmful algal blooms: a formidable predictive challenge. J. Phycol. 46:220235.
  • HELCOM. 2007. Climate change on the Baltic Sea area. Balt. Sea Environ. Proc., No. 111. Available at: http://helcom.fi/Lists/Publications/BSEP111.pdf (accessed 8 October 2013).
  • IPCC, Intergovernmental Panel on Climate Change 2007. Climate change 2007: Synthesis report. Fourth assessment report. Available at: http://www.ipcc.ch/publications_and_data/publications_ipcc_fourth_assessment_report_synthesis_report.htm (accessed 4 September 2013).
  • Jiang, X. D., D. J. Lonsdale, and C. J. Gobler. 2010. Density-dependent nutritional value of the dinoflagellate Cochlodinium polykrikoides to the copepod Acartia tonsa. Limnol. Oceanogr. 55:16431652.
  • Kaniewska, P., P. R. Campbell, D. I. Kline, M. Rodriguez-Lanetty, D. J. Miller, S. Dove, et al. 2012. Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS ONE 7:e34659.
  • Knuckey, R. M., G. L. Semmens, R. J. Mayer, and M. A. Rimmer. 2005. Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249:339351.
  • Koski, M., and H. Kuosa. 1999. The effect of temperature, food concentration and female size on the egg production of the planktonic copepod Acartia bifilosa. J. Plankton Res. 21:17791789.
  • Kótai, J. 1972. Instructions for Preparation of Modified Nutrient Solution Z8 for Algae. Norwegian Institute for Water Research, Blindern.
  • Kroeker, K. J., R. L. Kordas, R. N. Crim, and G. G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13:14191434.
  • Kroeker, K. J., R. L. Kordas, R. Crim, I. S. Hendriks, L. Ramajo, G. S. Singh, et al. 2013. Impacts of ocean acidification on marine organisms: quatifying sensitivities and interaction with warming. Glob. Change Biol. 19:18841896.
  • Kurihara, H., S. Shimode, and Y. Shirayama. 2004. Effects of raised CO2 concentration on the egg production rate and early development of two marine copepods (Acartia steueri and Acartia erythraea). Mar. Pollut. Bull. 49:721727.
  • Lankoff, A., A. Banasik, and M. Nowak. 2002. Protective effect of melatonin against nodularin-induced oxidative stress in mouse liver. Arch. Toxicol. 76:158165.
  • Lesser, M. P. 2006. Oxidative stress in marine environments: biochemistry and physiological ecology. Annu. Rev. Physiol. 68:253278.
  • Mauchline, J. 1998. The biology of calanoid copepods. Advances in Marine Biology Vol. 33, Academic Press, San Diego.
  • Mayor, D. J., C. Matthews, K. Cook, A. F. Zuur, and S. Hay. 2007. CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser. 350:9197.
  • Melzner, F., M. A. Gutowska, M. Langenbuch, S. Dupont, M. Lucassen, M. C. Thorndyke, et al. 2009. Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:23132331.
  • Metcalf, J. S., and G. A. Codd. 2003. Analysis of cyanobacterial toxins by immunological methods. Chem. Res. Toxicol. 16:103112.
  • Metcalfe, N. B., and C. Alonso-Alvarez. 2010. Oxidative stress as a life-history constraint: the role of reactive oxygen species in shaping phenotypes from conception to death. Funct. Ecol. 24:984996.
  • Monaghan, P., N. B. Metcalfe, and R. Torres. 2009. Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. Ecol. Lett. 12:7592.
  • Pamplona, R., and D. Costantini. 2011. Molecular and structural antioxidant defenses against oxidative stress in animals. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301:R843R863.
  • Pandolfi, J. M., S. R. Connolly, D. J. Marshall, and A. L. Cohen. 2011. Projecting coral reefs futures under global warming and ocean acidification. Science 333:418422.
  • Pinho, G. L., C. M. da Rosa, A. Bianchini, J. S. Yunes, L. A. Proença, and J. M. Monserrat. 2005. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab species. Ecotoxicol. Environ. Saf. 61:353360.
  • Porter, K. G., and J. D. Orcutt, 1980. Nutritional adequacy, manageability and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. Pp. 268281 in W. C. Kerfoot ed. Ecology and evolution in zooplankton communities. Univ. Press of New England, Hanover.
  • Pörtner, H. O., and A. P. Farrell. 2008. Physiology and climate change. Science 322:690692.
  • Prior, R. L., H. Hoang, L. Gu, X. Wu, M. Bacchiocca, L. Howard, et al. 2003. Assays for hydrophilic and lipophilic antioxidant capacity (oxygen radical absorbance capacity (ORACFL)) of plasma and other biological and food samples. J. Agric. Food Chem. 51:32733279.
  • Reymond, C. E., A. Lloyd, D. I. Kline, S. G. Dove, and J. M. Pandolfi. 2013. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19:291302.
  • Richardson, A. J. 2008. In hot water: zooplankton and climate change. ICES J. Mar. Sci. 65:279295.
  • Salonen, K. 1981. Rapid and precise determination of total inorganic carbon and some gases in aqueous-solutions. Water Res. 15:403406.
  • Schmidt, K., and S. H. Jónasdóttir. 1997. Nutritional quality of two cyanobacteria: how rich is ‘poor’ food? Mar. Ecol. Prog. Ser. 151:110.
  • Todgham, A. E., and G. E. Hofmann. 2009. Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J. Exp. Biol. 212:25792594.
  • Tomanek, L. 2011. Environmental proteomics: changes in the proteome of marine organisms in response to environmental stress, pollutants, infection, symbiosis, and development. Ann. Rev. Mar. Sci. 3:373399.
  • Tomanek, L., M. J. Zuzow, A. V. Ivanina, E. Beniash, and I. M. Sokolova. 2011. Proteomic response to elevated PCO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. J. Exp. Biol. 214:18361844.
  • Utermöhl, H. 1958. Zur vervollkommung der quantitativen phytoplankton-methodik. Mitt. Int. Ver. Theor. Angew. Limnol. 9:138.
  • Vehmaa, A., A. Brutemark, and J. Engström-Öst. 2012. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE, 7:e48538.
  • Wasmund, N., J. Tuimala, S. Suikkanen, L. Vandepitte, and A. Kraberg. 2011. Long-term trends in phytoplankton composition in the western and central Baltic Sea. J. Mar. Syst. 87:145159.
  • Whiteley, N. M. 2011. Physiological and ecological responses of crustaceans to ocean acidification. Mar. Ecol. Prog. Ser. 430:257271.