• Boreal forest;
  • Euphagus carolinus ;
  • geographical range;
  • global warming;
  • Odonata ;
  • Pacific Decadal Oscillation;
  • population declines;
  • Rusty Blackbird


Climate change is predicted to negatively impact wildlife through a variety of mechanisms including retraction of range. We used data from the North American Breeding Bird Survey and regional and global climate indices to examine the effects of climate change on the breeding distribution of the Rusty Blackbird (Euphagus carolinus), a formerly common species that is rapidly declining. We found that the range of the Rusty Blackbird retracted northward by 143 km since the 1960s and that the probability of local extinction was highest at the southern range margin. Furthermore, we found that the mean breeding latitude of the Rusty Blackbird was significant and positively correlated with the Pacific Decadal Oscillation with a lag of six years. Because the annual distribution of the Rusty Blackbird is affected by annual weather patterns produced by the Pacific Decadal Oscillation, our results support the hypothesis that directional climate change over the past 40 years is contributing to the decline of the Rusty Blackbird. Our study is the first to implicate climate change, acting through range retraction, in a major decline of a formerly common bird species.