SEARCH

SEARCH BY CITATION

References

  • Altartouri, A., and Jolma, A. 2012. Mining cellular automata rules: the use of a Naïve Bayes classifier to provide transition rules in Phragmites simulation. Pp. 7990 in N. N. Pinto, J. Dourado and A. Natálio, eds. Proceedings of CAMUSS The International Symposium on Cellular Automata Modeling for Urban and Spatial Systems.), Oporto, Portugal November 8-10, Department of Civil Engineering of the University of Coimbra, Coimbra.
  • Alvarez, M. G., F. Tron, and A. Mauchamp. 2005. Sexual versus asexual colonization by Phragmites australis: 25-year reed dynamics in a Mediterranean marsh, southern France. Wetlands 25:639647.
  • Angel, S., J. Parent, and D. L. Civco. 2010. Ten compactness properties of circles: measuring shape in geography. Can. Geogr. 54:441461.
  • Austin, M. P. 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Model. 157:101118.
  • Baldwin, A. H., K. M. Kettenring, and D. F. Whigham. 2010. Seed banks of Phragmites australis-dominated brackish wetlands: relationships to seed viability, inundation, and land cover. Aquat. Bot. 93:163169.
  • Bart, D., and J. M. Hartman. 2003. The role of large rhizome dispersal and low salinity windows in the establishment of common reed, Phragmites australis, in salt marshes: new links to human activities. Estuaries 26:436443.
  • Bart, D., D. Burdick, R. Chambers, and J. M. Hartman. 2006. Human facilitation of Phragmites australis invasions in tidal marshes: a review and synthesis. Wetl. Ecol. Manag. 14:5365.
  • Belzile, F., J. Labbé, M.-C. LeBlanc, and C. Lavoie. 2010. Seeds contribute strongly to the spread of the invasive genotype of the common reed (Phragmites australis). Biol. Invasions 122:22432250.
  • Bertness, M. D., P. J. Ewanchuk, and B. R. Silliman. 2002. Anthropogenic modification of New England salt marsh landscapes. Proc. Natl Acad. Sci. 99:13951398.
  • Burdick, D., and R. Konisky. 2003. Determinants of expansion for Phragmites australis, reed, in natural and impacted coastal marshes. Estuaries 26:407416.
  • Caruana, R., and A. Niculescu-Mizil. 2006. An empirical comparison of supervised learning algorithms. Presented atProceedings of the International Conference Machine Learning, 23rd, Pittsburgh, PA.
  • Chambers, R. M., K. J. Havens, S. Killeen, and M. Berman. 2008. Common reed Phragmites australis occurrence and adjacent land use along estuarine shoreline in Chesapeake Bay. Wetlands 28:10971103.
  • Clevering, O. A., and J. Van der Toorn. 2000. Observations on the colonization of a young bolder area in the Netherlands with special reference to the clonal expansion of Phragmites australis. Folia Geobot. 35:375387.
  • Cliff, A., and J. Ord. 1969. The Problem of Spatial Autocorrelation. Pp. 2555 in A. Scott, ed. London papers in regional science. Pion, London.
  • Coops, H., and G. van der Velde. 1995. Seed dispersal, germination and seedling growth of six helophyte species in relation to water-level zonation. Freshw. Biol. 34:1220.
  • Coops, H., and G. van der Velde. 1996. Effects of waves on helophyte stands: mechanical characteristics of stems of Phragmites australis and Scirpus lacustris. Aquat. Bot. 53:175185.
  • Coops, H., N. Geilen, H. Verheij, R. Boeters, and G. van der Velde. 1996. Interactions between waves, bank erosion and emergent vegetation: an experimental study in a wave tank. Aquat. Bot. 53:187198.
  • De'ath, G. 2007. Boosted trees for ecological modeling and prediction. Ecology 88:243251.
  • Dormann, C. F. 2007a. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 16:129138.
  • Dormann, C. F. 2007b. Promising the future? Global change projections of species distributions. Basic Appl. Ecol. 8:387397.
  • Ekebom, J., P. Laihonen, and T. Suominen. 2003. GIS-based step-wise procedure for assessing physical exposure in fragmented archipelagos. Estuar. Coast. Shelf Sci. 57:887898.
  • Elith, J., and C. H. Graham. 2009. Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography 32:6677.
  • Elith, J., and J. R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40:677697.
  • Elith, J., C. H. Graham, R. P. Anderson, M. Dudík, S. Ferrier, A. Guisan, et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29:129151.
  • Elith, J., J. R. Leathwick, and T. Hastie. 2008. A working guide to boosted regression trees. J. Anim. Ecol. 77:802813.
  • Engloner, A. I., and A. Major. 2011. Clonal diversity of Phragmites australis propagating along water depth gradient. Aquat. Bot. 94:172176.
  • ESRI. 2011. ArcGIS desktop: release 10. Environmental Systems Research Institute, Redlands, CA.
  • Falk, M., R. Denham, and K. Mengersen. 2011. Spatially stratified sampling using auxiliary information for geostatistical mapping. Environ. Ecol. Stat. 18:93108.
  • Fér, T., and Z. Hroudová. 2009. Genetic diversity and dispersal of Phragmites australis in a small river system. Aquat. Bot. 90:165171.
  • Fortin, M.-J., and M. R. T. Dale. 2009. Spatial autocorrelation in ecological studies: a legacy of solutions and myths. Geogr. Anal. 41:392397.
  • Gucker, C. L. 2008. Phragmites australis. in Fire effects information system, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available at http://www.fs.fed.us/database/feis/plants/graminoid/phraus/all.html. (accessed February 2014).
  • Guisan, A., and N. E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecol. Model. 135:147186.
  • Härmä, M., A. Lappalainen, and L. Urho. 2008. Reproduction areas of roach (Rutilus rutilus) in the northern Baltic Sea: potential effects of climate change. Can. J. Fish. Aquat. Sci. 65:26782688.
  • Haslam, S. 1972. Biological flora of the British Isles. Phragmites communis Trin. J. Ecol. 60:585610.
  • Higgins, S. I., D. M. Richardson, and R. M. Cowling. 1996. Modeling invasive plant spread: the role of plant–environment interactions and model structure. Ecology 77:20432054.
  • Hirzel, A. H., and G. Le Lay. 2008. Habitat suitability modelling and niche theory. J. Appl. Ecol. 45:13721381.
  • Hochachka, W. M., R. Caruana, D. Fink, A. R. T. Munson, M. Riedewald, D. Sorokina, et al. 2007. Data-mining discovery of pattern and process in ecological systems. J. Wildl. Manage. 71:24272437.
  • Huhta, A. 2009. Decorative or Outrageous - The significance of the Common Reed (Phragmites australis) on water quality. Comments from Turku University of Applied Sciences 48, Turku University of Applied Sciences. Available at http://julkaisut.turkuamk.fi/isbn9789522160867.pdf. (accessed December 2013).
  • Hutchinson, M. F. 1988. Calculation of hydrologically sound digital elevation models. Paper presented at Third International Symposium on Spatial Data Handling at Sydney, Australia.
  • Hutchinson, M. F. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. J. Hydrol. 106:211232.
  • IBAM. 2011. IBAM Briefing, Integrated Bayesian risk analysis of ecosystem management in the Gulf of Finland. Available at http://www.bonusportal.org/files/1331/BONUS_Briefing_12_IBAM.pdf. (accessed August 2013).
  • Ikonen, I., and E. Hagelberg, eds. 2007. Read Up on Reed! End report of the Reed Strategy -project (Interreg IIIA –programme). Southwest Finland Regional Environment Centre, Turku, Finland. 60 pp.
  • Jiménez-Valverde, A., and J. M. Lobo. 2007. Threshold criteria for conversion of probability of species presence to either-or presence-absence. Acta Oecol. 31:361369.
  • Jiménez-Valverde, A., J. M. Lobo, and J. Hortal. 2008. Not as good as they seem: the importance of concepts in species distribution modelling. Divers. Distrib. 14:885890.
  • Jutila, H. 2001. How does grazing by cattle modify the vegetation of coastal grasslands along the Baltic Sea? Ann. Bot. Fenn. 38:181200.
  • Kaitaranta, J., J. Niemistö, O. Buhvestova, and L. Nurminen. 2013. Quantifying sediment resuspension and internal phosphorus loading in shallow near-shore areas in the Gulf of Finland. Boreal Environ. Res. 18:473487.
  • Keating, K. A., and S. Cherry. 2004. Use and interpretation of logistics regression in habitat selection studies. J. Wildl. Manage. 68:774789.
  • Kettenring, K. M., and E. M. Mock. 2012. Genetic diversity, reproduction mode, and dispersal differ between cryptic invader, Phragmites australis, and its native conspecific. Biol. Invasions 14:24892504.
  • Kettenring, K. M., M. K. McCormick, H. M. Baron, and D. F. Whigham. 2010. Phragmites australis (common reed) invasion in the Rhode River subestuary of the Chesapeake Bay: disentangling the effects of foliar nutrients, genetic diversity, patch size, and seed viability. Estuaries Coasts 33:118126.
  • King, R., W. Deluca, D. Whigham, and P. Marra. 2007. Threshold effects of coastal urbanization on Phragmites australis (common reed) abundance and foliar nitrogen Chesapeake Bay. Estuaries Coasts 30:469481.
  • Koppitz, H. 1999. Analysis of genetic diversity among selected populations of Phragmites australis world-wide. Aquat. Bot. 64:209221.
  • Koppitz, H., and H. Kühl. 2000. To the importance of genetic diversity of Phragmites australis in the development of reed stands. Wetlands Ecol. Manage. 8:403414.
  • Koppitz, H., H. Kühl, K. Hesse, and J.-G. Kohl. 1997. Some aspects of the importance of genetic diversity in Phragmites australis (Cav.) Trin. ex Steudel for the development of reed stands. Bot. Acta 110:217223.
  • Lambertini, C., M. H. G. Gustafsson, J. Frydenberg, M. Speranza, and H. Brix. 2008. Genetic diversity patterns in Phragmites australis at the population, regional, and continental scales. Aquat. Bot. 88:160170.
  • Lampén, H. 2012. Mapping ecosystem services using participatory geographical information systems: a case study from Southwest Finland. [M.Sc. thesis], Department of Geography and Geology, University of Turku. 90 pp.
  • Lappalainen, A., M. Härmä, S. Kuningas, and L. Urho. 2008. Reproduction of pike (Esox lucius) in reed belt shores of the SW coast of Finland, Baltic Sea: a new survey approach. Boreal Environ. Res. 13:370380.
  • Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74:16591673.
  • Legendre, P., M. R. T. Dale, M.-J. Fortin, J. Gurevitch, M. Hohn, and D. Myers. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25:601615.
  • Lundqvist, D., D. Jansen, T. Balstroem, and C. Christiansen. 2006. A GIS-based method to determine maximum fetch applied to the North Sea-Baltic Sea transition. J. Coastal Res. 22:640644.
  • Luther, H. 1951. Verbreitung und Ökologie der höheren Wasserpflanzen im Brackwasser der Ekenäs-Gegend in Südfinnland. II. Spezieller Teil. Acta Bot. Fenn. 50:1370.
  • Maheu-Giroux, M., and S. De Blois. 2007. Landscape ecology of Phragmites australis invasion in networks of linear wetlands. Landscape Ecol. 22:285301.
  • Mal, T. K., and L. Narine. 2004. The biology of Canadian weeds. 129. Phragmites australis (Cav.) Trin. ex Steud. Can. J. Plant Sci. 84:365396.
  • McCormick, M. K., K. M. Kettenring, H. M. Baron, and D. F. Whigham. 2010. Extent and reproductive mechanisms of Phragmites australis spread in brackish wetlands in Chesapeake Bay, Maryland (USA). Wetlands 30:6774.
  • Meriste, M., K. Kirsimäe, and L. Freiberg. 2012. Relative sea-level changes at shallow coasts inferred from reed bed distribution over the last 50 years in Matsalu Bay, the Baltic Sea. J. Coastal Res. 28:110.
  • Minasny, B., and A. B. McBratney. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 32:13781388.
  • Morisette, J. T., C. S. Jarnevich, A. Ullah, W. Cai, J. A. Pedelty, J. E. Gentle, et al. 2006. A tamarisk habitat suitability map for the continental United States. Front. Ecol. Environ. 4:1117.
  • Munsterhjelm, R. 1997. The aquatic macrophyte vegetation of flads and gloes, S coast of Finland. Acta Bot. Fennica 157:168.
  • von Numers, M. 2011. Sea shore plants of the SW Archipelago of Finland – distribution patterns and long-term changes during the 20th century. Ann. Bot. Fenn. 48:146.
  • Ojala, E., and S. Louekari. 2002. The merging of human activity and natural change: temporal and spatial scales of ecological change in the Kokemaenjoki river delta, SW Finland. Landsc. Urban Plan. 61:8398.
  • Olden, J. D., J. J. Lawler, and N. L. Poff. 2008. Machine learning methods without tears: a primer for ecologists. Q. Rev. Biol. 83:171193.
  • Ostendorp, W. 1989. “Die-back” of reeds in Europe – a critical review of literature. Aquat. Bot. 35:526.
  • Pearce, J., and S. Ferrier. 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133:225245.
  • Pitkänen, T. 2006. Missä ruokoa kasvaa? (Where does reed grow?) - järviruokoalueiden satelliittikartoitus Etelä-Suomessa ja Viron Väinänmeren rannikoilla. Turun ammattikorkeakoulun puheenvuoroja 29. Turku University of Applied Sciences. Available at http://julkaisut.turkuamk.fi/isbn9525596664.pdf (accessed February 2014).
  • Pitkänen, H., M. Peuraniemi, M. Westerbom, M. Kilpi, and M. von Numers. 2013. Long-term changes in distribution and frequency of aquatic vascular plants and charophytes in an estuary in the Baltic Sea. Ann. Bot. Fenn. 50:154.
  • Rice, D., J. Rooth, and J. C. Stevenson. 2000. Colonization and expansion of Phragmites australis in upper Chesapeake Bay tidal marshes. Wetlands 20:280299.
  • Ridgeway, G. 1999. The state of boosting. Comput. Sci. Stat. 31:172181.
  • Ridgeway, G. 2006. Generalized boosted regression models. Documentation on the R package “gbm”, version 1.5-7. Available at http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.113.9298andrep=rep1andtype=pdf. (accessed August 2013).
  • Robinson, L. M., J. Elith, A. J. Hobday, R. G. Pearson, B. E. Kendall, H. P. Possingham, et al. 2011. Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities. Global Ecol. Biogeogr. 20:789802.
  • Roddick, J. F., and B. G. Lees. 2009. Spatio-Temporal Data Mining Paradigms and Methodologies. Pp. 2744 in H. J. Miller and J. Han, eds. Geographic data mining and knowledge discovery, 2nd ed. CRC Press, NY.
  • Rodrigues, R. P., B. A. Knoppers, W. F. L. Souza, and E. S. Santos. 2009. Suspended matter and nutrient gradients of a small-scale river plume in Sepetiba Bay, SE-Brazil. Braz. Arch. Biol. Technol. 52:503512.
  • Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl Acad. Sci. USA 99:24452449.
  • Saltonstall, K. 2003. A rapid method for identifying the origin of North American Phragmites populations using RFLP analysis. Wetlands 23:10431047.
  • Silliman, B. R., and M. D. Bertness. 2004. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. Conserv. Biol. 18:14241434.
  • Sing, T., O. Sander, N. Beerenwinkel, and T. Lengauer. 2005. ROCR: visualizing classifier performance in R. Bioinformatics 21:39403941.
  • Suominen, T. 1998. Järviruokokasvustojen muutokset Saaristomerellä (Changes in Phragmites australis stands in the Archipelago Sea, SW Finland). [M.Sc. thesis]. Department of Geography, University of Turku, Turku, Finland. 93 pp.
  • Sutton, C. 2005. Classification and regression trees, bagging, and boosting. Handbook Stat. 24:303329.
  • SYKE 2009. Eutrophication in Finland. Finnish Environment Institute. Available at http://www.ymparisto.fi/default.asp?node=18421andlan=en. (accessed August 2013).
  • Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46:234240.
  • Tolvanen, H., and T. Suominen. 2005. Quantification of openness and wave activity in archipelago environments. Estuar. Coast. Shelf Sci. 64:436446.
  • Vasquez, E. A., E. P. Glenn, J. J. Brown, G. R. Guntenspergen, and S. G. Nelson. 2005. Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poacea). Mar. Ecol. Prog. Ser. 298:18.
  • Weisner, S. E. B. 1987. The relation between wave exposure and distribution of emergent vegetation in a eutrophic lake. Freshw. Biol. 18:537544.
  • Weisner, S. E. B., and B. Ekstam. 1993. Influence of germination time of juvenile performance of Phragmites australis on temporarily exposed bottoms – implications for the colonization of lake beds. Aquat. Bot. 45:107118.
  • Weisner, S. E. B., W. Ganeli, and B. Ekstam. 1993. Influence of submergence on growth of seedlings of Scirpus lacustris and Phragmites australis. Freshw. Biol. 29:371375.
  • White, R., and G. Engelen. 2000. High-resolution integrated modeling of the spatial dynamics of urban and regional systems. Comput. Environ. Urban Syst. 24:383400.
  • Wickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York.
  • Wilson, E. O., and W. H. Bossert. 1971. A primer of population biology. Sinauer Associates Inc, Stamford, CT. 192 pp.
  • Wintle, B. A., and D. C. Bardos. 2006. Modelling species habitat relationships with spatially autocorrelated observation data. Ecol. Appl. 16:19451958.
  • Zimmermann, N. E., T. C. Edwards, C. H. Graham, P. B. Pearman, and J. C. Svenning. 2010. New trends in species distribution modelling. Ecography 33:985989.