SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Rafael S. Oliveira, Bradley O. Christoffersen, Fernanda de V. Barros, Grazielle S. Teodoro, Paulo Bittencourt, Mauro M. Brum-Jr, Ricardo A. G. Viani, Changing precipitation regimes and the water and carbon economies of trees, Theoretical and Experimental Plant Physiology, 2014, 26, 1, 65

    CrossRef

  2. 2
    Ignatious Matimati, G. Anthony Verboom, Michael D. Cramer, Do hydraulic redistribution and nocturnal transpiration facilitate nutrient acquisition in Aspalathus linearis?, Oecologia, 2014,

    CrossRef

  3. 3
    Joan Laur, Uwe G. Hacke, Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling, New Phytologist, 2014, 203, 2
  4. 4
    M. A. Forster, How significant is nocturnal sap flow?, Tree Physiology, 2014,

    CrossRef

  5. 5
    Claudia Cocozza, Giovanni Marino, Alessio Giovannelli, Claudio Cantini, Mauro Centritto, Roberto Tognetti, Simultaneous measurements of stem radius variation and sap flux density reveal synchronisation of water storage and transpiration dynamics in olive trees, Ecohydrology, 2014, 7, 3
  6. 6
    M.S. Alvarado-Barrientos, F. Holwerda, H. Asbjornsen, T.E. Dawson, L.A. Bruijnzeel, Suppression of transpiration due to cloud immersion in a seasonally dry Mexican weeping pine plantation, Agricultural and Forest Meteorology, 2014, 186, 12

    CrossRef

  7. 7
    Gregory R. Goldsmith, Changing directions: the atmosphere–plant–soil continuum, New Phytologist, 2013, 199, 1
  8. 8
    Kuni Kitajima, Michael F. Allen, Michael L. Goulden, Contribution of hydraulically lifted deep moisture to the water budget in a Southern California mixed forest, Journal of Geophysical Research: Biogeosciences, 2013, 118, 4
  9. 9
    Katarína Střelcová, Daniel Kurjak, Adriana Leštianska, Dana Kovalčíková, Ľubica Ditmarová, Jaroslav Škvarenina, Yousif Abdel-Rahman Ahmed, Differences in transpiration of Norway spruce drought stressed trees and trees well supplied with water, Biologia, 2013, 68, 6, 1118

    CrossRef

  10. You have free access to this content10
    Cleiton B. Eller, Aline L. Lima, Rafael S. Oliveira, Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae), New Phytologist, 2013, 199, 1
  11. 11
    Tengfei Yu, Qi Feng, Jianhua Si, Haiyang Xi, Zongxing Li, Aifang Chen, Hydraulic redistribution of soil water by roots of two desert riparian phreatophytes in northwest China’s extremely arid region, Plant and Soil, 2013, 372, 1-2, 297

    CrossRef

  12. 12
    Anastassia M. Makarieva, Victor G. Gorshkov, Bai-Lian Li, Revisiting forest impact on atmospheric water vapor transport and precipitation, Theoretical and Applied Climatology, 2013, 111, 1-2, 79

    CrossRef

  13. 13
    Teresa S. David, Clara A. Pinto, Nadezhda Nadezhdina, Cathy Kurz-Besson, Manuel O. Henriques, Teresa Quilhó, Jan Cermak, M. Manuela Chaves, João S. Pereira, Jorge S. David, Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow, Forest Ecology and Management, 2013, 307, 136

    CrossRef

  14. 14
    K. Beauchamp, M. Mencuccini, M. Perks, B. Gardiner, The regulation of sapwood area, water transport and heartwood formation in Sitka spruce, Plant Ecology & Diversity, 2013, 6, 1, 45

    CrossRef

  15. 15
    María Susana Alvarado-Barrientos, Virginia Hernández-Santana, Heidi Asbjornsen, Variability of the radial profile of sap velocity in Pinus patula from contrasting stands within the seasonal cloud forest zone of Veracruz, Mexico, Agricultural and Forest Meteorology, 2013, 168, 108

    CrossRef

  16. 16
    Maurits W. Vandegehuchte, Kathy Steppe, A triple-probe heat-pulse method for measurement of thermal diffusivity in trees, Agricultural and Forest Meteorology, 2012, 160, 90

    CrossRef

  17. 17
    Judith L. Robinson, Lee D. Slater, Karina V.R. Schäfer, Evidence for spatial variability in hydraulic redistribution within an oak–pine forest from resistivity imaging, Journal of Hydrology, 2012, 430-431, 69

    CrossRef

  18. 18
    M. Trcala, J. Čermák, Improvement of the trunk heat balance method including measurement of zero and reverse sap flows, Agricultural and Forest Meteorology, 2012, 166-167, 120

    CrossRef

  19. 19
    Maurits W. Vandegehuchte, Kathy Steppe, Interpreting the Heat Field Deformation method: Erroneous use of thermal diffusivity and improved correlation between temperature ratio and sap flux density, Agricultural and Forest Meteorology, 2012, 162-163, 91

    CrossRef

  20. 20
    Felipe Orellana, Parikshit Verma, Steven P. Loheide, Edoardo Daly, Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems, Reviews of Geophysics, 2012, 50, 3
  21. 21
    Nadezhda Nadezhdina, Maurits W. Vandegehuchte, Kathy Steppe, Sap flux density measurements based on the heat field deformation method, Trees, 2012, 26, 5, 1439

    CrossRef

  22. 22
    Iván Prieto, Cristina Armas, Francisco I. Pugnaire, Water release through plant roots: new insights into its consequences at the plant and ecosystem level, New Phytologist, 2012, 193, 4
  23. You have free access to this content23
    S. H. H. Shah, R. W. Vervoort, S. Suweis, A. J. Guswa, A. Rinaldo, S. E. A. T. M. van der Zee, Stochastic modeling of salt accumulation in the root zone due to capillary flux from brackish groundwater, Water Resources Research, 2011, 47, 9
  24. You have free access to this content24
    Paul D. Hallett, L'ubomír Lichner, Artemi Cerdà, Biohydrology: coupling biology and soil hydrology from pores to landscapes, Ecohydrology, 2010, 3, 4