Comparison of soil moisture and meteorological controls on pine and spruce transpiration



Transpiration is an important component of the water balance in the high elevation headwaters of semi-arid drainage basins. We compare the importance of soil moisture and meteorological controls on transpiration and quantify how these controls are different at a ponderosa pine site and a spruce site in the Jemez river drainage basin of northern New Mexico, a sub-basin of the Rio Grande. If only soil moisture controls fluctuations in transpiration, then simple hydrologic models focussed only on soil moisture limitations are reasonable for water balance studies. If meteorological controls are also critical, then more complex models are required.

We measured volumetric water content in the soil and sap velocity, and assumed that transpiration is proportional to sap velocity. Ponderosa sap velocity varies with root zone soil moisture. Nearly all of the scatter in the ponderosa sap velocity–soil moisture relationship can be predicted using a simple model of potential evapotranspiration (ET), which depends only on measured incident radiation and air temperature. Therefore, simple hydrologic models of ponderosa pine transpiration are warranted. In contrast, spruce sap velocity does not clearly covary with soil moisture. Including variations in potential evapotranspiration does not clarify the relationship between sap velocity and soil moisture. Likewise, variations in radiation, air temperature, and vapour pressure do not explain the observed fluctuations in sap velocity, at least according to the standard models and parameters for meteorological restrictions on transpiration. Both the simple and more complex models commonly used to predict transpiration are not adequate to model the water balance in the spruce forest studied here. Copyright © 2008 John Wiley & Sons, Ltd.