Linking upstream channel instability to downstream degradation: Grenada Lake and the Skuna and Yalobusha River Basins, Mississippi



Unstable fluvial systems are characterized by actively migrating knickpoints, incising channel beds, failing banks, and recruitment of large woody debris and it would appear that river corridors downstream of these processes would be adversely affected or impaired because of higher fluxes of sediment and other riverine products. In north-central Mississippi, the Yalobusha River is one such system and the characteristics of two downstream locations are examined to explore this geomorphic linkage between upstream instability and downstream degradation. For the large woody debris plug along the Yalobusha River, it is found that (1) the deposit is composed mostly of sand covered with a veneer of silt and clay, (2) agrichemicals and enriched concentrations of elements are prevalent, and (3) excessive sedimentation and wood accumulation have forced river flow entirely out-of-bank. For Grenada Lake, it is found that (1) the impounded sediment is predominantly clay, (2) agrichemicals and elements observed throughout the reservoir show no spatial variation, (3) little difference exists in the amount and quality between the sediments deposited in Skuna and Yalobusha River arms, and (4) only a small fraction of the reservoir's storage capacity has been lost because of sedimentation. While excessive sedimentation and large woody debris recruitment have had a marked affect on stream corridor function in the area of the debris plug, the high sediment loads associated with the unstable portions of the Yalobusha River and their associated products have not been communicated to Grenada Lake. The fish consumption advisories within Grenada Lake and its tributaries due to bioaccumulated trace elements and agrichemicals, appear to be independent of the pervasive river channel instability occurring upstream. Copyright © 2009 John Wiley & Sons, Ltd.