• 1
    Cohen, P. L. and Eisenberg, R. A., Lpr and gld: single gene models of systemic autoimmunity and lymphoproliferative disease. Annu. Rev. Immunol. 1991. 9: 243269.
  • 2
    Theofilopoulos, A. N., Kofler, R., Singer, P. A. and Dixon, F. J., Molecular genetics of murine lupus models. Adv. Immunol .1989. 46: 61109.
  • 3
    Kanauchi, H., Furukawa, F. and Imamura, S., Characterization of cutaneous infiltrates in MRL/lprmice monitored from onset to the full development of lupus erythematosus-like skin lesions. J. Invest. Dermatol .1991. 96: 478483.
  • 4
    Furukawa, F., Tanaka, H., Sekita, K., Nakamura, T., Horiguchi, Y. and Hamashima, Y., Dermatopathological studies on skin lesions of MRL mice. Arch. Dermatol. Res .1984. 276: 186194.
  • 5
    Nose, M., Nishihara, M. and Fujii, H., Genetic basis of the complex pathological manifestations of collagen disease: lessons from MRL/lpr and related mouse models. Int. Rev. Immunol. 2000. 19: 473498.
  • 6
    Singh, R. R., Saxena, V., Zang, S., Li, L., Finkelman, F. D., Witte, D. P. and Jacob, C. O., Differential contribution of IL-4 and STAT6 versus STAT4 to the development of lupus nephritis. J. Immunol. 2003. 170: 48184825.
  • 7
    Mills, J. A., Systemic lupus erythematosus. N. Engl. J. Med .1994. 330: 18711879.
  • 8
    Chan, O. T., Paliwal, V., McNiff, J. M., Park, S. H., Bendelac, A. and Shlomchik, M. J., Deficiency in β 2-microglobulin, but not CD1, accelerates spontaneous lupus skin disease while inhibiting nephritis in MRL-Faslpr mice: an example of disease regulation at the organ level. J. Immunol .2001. 167: 29852990.
  • 9
    Christianson, G. J., Blankenburg, R. L., Duffy, T. M., Panka, D., Roths, J. B., Marshak-Rothstein, A. and Roopenian, D. C., β 2-microglobulin dependence of the lupus-like autoimmune syndrome of MRL-lpr mice. J. Immunol .1996. 156: 49324939.
  • 10
    Christianson, G. J., Brooks, W., Vekasi, S., Manolfi, E. A., Niles, J., Roopenian, S. L., Roths, J. B., Rothlein, R. and Roopenian, D. C., β 2-microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J. Immunol .1997. 159: 47814792.
  • 11
    Blumberg, R. S., van de Wal, Y., Claypool, S., Corazza, N., Dickinson, B., Nieuwenhuis, E., Pitman, R., Spiekermann, G., Zhu, X., Colgan, S. and Lencer, W. I., The multiple roles of major histocompatibility complex class-I-like molecules in mucosal immune function. Acta Odontol. Scand .2001. 59: 139144.
  • 12
    Ghetie, V., Hubbard, J. G., Kim, J. K., Tsen, M. F., Lee, Y. and Ward, E. S., Abnormally short serum half-lives of IgG in β 2-microglobulin-deficient mice. Eur. J. Immunol .1996.26: 690696.
  • 13
    Koh, D. R., Ho, A., Rahemtulla, A., Fung-Leung, W. P., Griesser, H. and Mak, T. W., Murine lupus in MRL/lpr mice lacking CD4 or CD8 T cells. Eur. J. Immunol .1995. 25: 25582562.
  • 14
    Yang, J. Q., Saxena, V., Xu, H., Van Kaer, L., Wang, C. R. and Singh, R. R., Repeated α -galactosylceramide administration results in expansion of NK T cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J. Immunol .2003. 171: 44394446.
  • 15
    Mieza, M. A., Itoh, T., Cui, J. Q., Makino, Y., Kawano, T., Tsuchida, K., Koike, T., Shirai, T., Yagita, H., Matsuzawa, A., Koseki, H. and Taniguchi, M., Selective reduction of Vα 14+ NK T cells associated with disease development in autoimmune-prone mice. J. Immunol .1996. 156: 40354040.
  • 16
    Takeda, K. and Dennert, G., The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J. Exp. Med .1993. 177: 155164.
  • 17
    Oishi, Y., Sumida, T., Sakamoto, A., Kita, Y., Kurasawa, K., Nawata, Y., Takabayashi, K., Takahashi, H., Yoshida, S., Taniguchi, M., Saito, Y. and Iwamoto, I., Selective reduction and recovery of invariant Vα 24Jα Q T cell receptorT cells in correlation with disease activity in patients with systemic lupus erythematosus. J. Rheumatol .2001. 28: 275283.
  • 18
    van der Vliet, H. J., von Blomberg, M. E., Nishi, N.,  Reijm, M., Voskuyl, A. E.,  van Bodegraven, A. A.,  Polman, C. H.,  Rustemeyer, T.,  Lips, P.,  van den Eertwegh, A. J.,  Giaccone, G., Scheper, R. J. and Pinedo, H. M., Circulating Vα 24+ Vβ 11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 2001. 100: 144148.
  • 19
    Kojo, S., Adachi, Y., Keino, H., Taniguchi, M. and Sumida, T., Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum .2001. 44: 11271138.
  • 20
    Hong, S., Wilson, M. T., Serizawa, I., Wu, L., Singh, N., Naidenko, O., Miura, T., Haba, T., Scherer, D. C., Wei, J., Kronenberg, M., Koezuka, Y. and Van Kaer, L., The natural killer T cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med. 2001. 7: 10521056.
  • 21
    Wang, B., Geng, Y. B. and Wang, C. R., CD1-restricted NK T Cells protect nonobese diabetic micefrom developing diabetes J. Exp. Med. 2001. 194: 313319.
  • 22
    Naumov, Y. N., Bahjat, K. S., Gausling, R., Abraham, R., Exley, M. A., Koezuka, Y., Balk, S. B., Strominger, J. L., Clare-Salzer, M. and Wilson, S. B., Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc. Natl. Acad. Sci. USA 2001. 98: 1383813843.
  • 23
    Miyamoto, K., Miyake, S. and Yamamura, T., A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. 2001.Nature 413: 531534.
  • 24
    Singh, A. K., Wilson, M. T., Hong, S., Olivares-Villagomez, D., Du, C., Stanic, A. K., Joyce, S., Sriram, S., Koezuka, Y. and Van Kaer, L., Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J. Exp. Med. 2000. 194: 18011811.
  • 25
    Sharif, S., Arreaza, G. A., Zucker, P., Mi, Q. S., Sondhi, J., Naidenko, O. V., Kronenberg, M., Koezuka, Y., Delovitch, T. L., Gombert, J. M., Leite-De-Moraes, M., Gouarin, C., Zhu, R., Hameg, A., Nakayama, T., Taniguchi, M., Lepault, F., Lehuen, A., Bach, J. F. and Herbelin, A., Activation of natural killer T cells by α -galactosylceramide treatment prevents the onset and recurrence of autoimmune Type 1 diabetes. Nat. Med. 2001. 7: 10571062.
  • 26
    Yang, J. Q., Singh, A. K., Wilson, M. T., Satoh, M., Stanic,A. K., Park, J. J., Hong, S., Gadola, S. D., Mizutani, A., Kakumanu, S. R., Reeves, W. H., Cerundolo, V., Joyce, S., Van Kaer, L. and Singh, R. R., Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J. Immunol .2003. 171: 21422153.
  • 27
    Bendelac, A., Rivera, M. N., Park, S. H. and Roark, J. H., Mouse CD1-specific NK1 T cells: development, specificity, and function. Annu. Rev. Immunol .1997. 15: 535562.
  • 28
    Porcelli, S. A., The CD1 family: a third lineage of antigen-presenting molecules . Adv. Immunol. 1995. 59: 198.
  • 29
    Brossay, L., Jullien, D., Cardell, S., Sydora, B., Burdin, N., Modlin, R. L. and Kronenberg, M., Mouse CD1 is mainly expressed on hemopoietic-derived cells. J. Immunol .1997. 159: 12161224.
  • 30
    Chen, Y. H., Wang, B., Chun, T., Zhao, L., Cardell, S., Behar, S. M., Brenner, M. B. and Wang, C. R., Expression of CD1d2 on thymocytes is not sufficientfor the development of NK T cells in CD1d1-deficient mice. J. Immunol .1999. 162: 45604566.
  • 31
    Mendiratta, S. K., Martin, W. D., Hong, S., Boesteanu, A., Joyce, S. and Van Kaer, L., CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 1997. 6: 469477.
  • 32
    Chen, Y. H., Chiu, N. M., Mandal, M., Wang, N. and Wang, C. R., Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 1997. 6: 459467.
  • 33
    Kanauchi, H., Furukawa, F. and Imamura, S., Evaluation of ATPase-positive Langerhans' cells in skin lesions of lupus erythematosus and experimentally induced inflammations. Arch. Dermatol. Res .1989. 281: 327332.
  • 34
    Rowden, G., Boudreau, S. and Higley, H., Langerhans cells and extra-epidermal dendritic cells. An investigation in laboratory animals and man with immunomorphological methods. Scand. J. Immunol .1985. 21: 471478.
  • 35
    Fitzpatrick, J. M., Koh, J. S., Hartwell, D., Beller, D. I. and Levine, J. S., Dysregulated cytokine expression in vivo in prediseased and diseased autoimmune-prone MRL mice. Autoimmunity 1996. 23: 217229.
  • 36
    Peng, S. L., McNiff, J. M., Madaio, M. P., Ma, J., Owen, M. J., Flavell, R. A., Hayday, A. C. and Craft, J., α β  T cell regulation and CD40 ligand dependence in murine systemic autoimmunity. J. Immunol .1997. 158: 24642470.
  • 37
    Yin, Z., Bahtiyar, G., Zhang, N., Liu, L., Zhu, P., Robert, M. E., McNiff, J., Madaio, M. P. and Craft, J., IL-10 regulates murine lupus. J. Immunol .2002. 169: 21482155.
  • 38
    Singh, R. R., Hahn, B. H. and Sercarz, E. E., Neonatal peptide exposure can prime T cells, and upon subsequent immunization induce their immune deviation: Implications for antibody- vs. T cell-mediated autoimmunity. J. Exp. Med . 1996. 183: 16131622.
  • 39
    Sonoda, K. H., Exley, M., Snapper, S., Balk, S. P. and Stein-Streilein, J., CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J. Exp. Med .1999. 190: 12151225.
  • 40
    Hermans, I. F., Silk, J. D., Gileadi, U., Salio, M., Mathew,B., Ritter, G., Schmidt, R., Harris, A. L., Old, L. and Cerundolo, V., NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 2003. 171: 51405147.
  • 41
    Kitamura, H., Iwakabe, K., Yahata, T., Nishimura, S., Ohta, A., Ohmi, Y., Sato, M., Takeda, K., Okumura, K., Van Kaer, L., Kawano, T., Taniguchi, M. and Nishimura, T., The natural killer T (NKT) cell ligand α -galactosylceramide demonstrates its immunopotentiating effect by inducing interleukin (IL)-12 production by dendritic cells and IL-12 receptor expression on NKT cells . J. Exp. Med .1999. 189: 11211128.
  • 42
    Chun, T., Page, M. J., Gapin, L., Matsuda, J. L., Xu, H., Nguyen, H., Kang, H. S., Stanic, A. K., Joyce, S., Koltun, W. A., Chorney, M. J., Kronenberg, M. and Wang, C. R., CD1d-expressing dendritic cells but notthymic epithelial cells can mediate negative selection of NKT cells. J. Exp. Med .2003. 197: 907918.
  • 43
    Xu, H., Chun, T., Colmone, A., Nguyen, H. and Wang, C. R., Expression of CD1d under the control of a MHC class Ia promoter skews the development of NKT cells, but not CD8+ T cells. J. Immunol .2003. 171: 41054112.
  • 44
    Vidal, S., Kono, D. H. and Theofilopoulos, A. N., Loci predisposing to autoimmunity in MRL-Faslpr and C57BL/6-Faslpr mice. J. Clin. Invest .1998. 101: 696702.
  • 45
    Fan, G. C. and Singh, R. R., Vaccination with minigenes encoding V(H)-derived major histocompatibility complex class I-binding epitopes activates cytotoxic T cells that ablate autoantibody-producing B cells and inhibit lupus. J. Exp. Med .2002. 196: 731741.
  • 46
    Goossens, P. L., Jouin, H., Mayal, G. and Milon, G., Isolation and flow cytometric analysis of the free lymphomyeloid cells present in murine liver. J. Immunol. Methods 1990. 132: 137144.
  • 47
    Wang, H. and Shlomchik, M. J., Maternal Ig mediates neonatal tolerance in rheumatoid factor transgenic mice but tolerance breaks down in adult mice. J. Immunol .1998. 160: 22632271.