SEARCH

SEARCH BY CITATION

  • 1
    Hahn, B. H., Animal models of systemic lupus erythematosus. In Wallace, D. J. and Hahn, B. H. (Eds.) Dubois' lupus erythematosus. Lippincott Williams & Wilkins, Philadelphia 1993, pp 24642473.
  • 2
    Craft, J. and Fatenejad, S., Self antigens and epitope spreading in systemic autoimmunity. Arthritis Rheum. 1997. 48: 13741382.
  • 3
    Zeng, D., Dick, M., Cheng, L., Amano, M., Dejbakhsh-Jones, S., Huie, P., Sibley, R. and Strober, S., Subsets of transgenic T cells that recognize CD1 induce or prevent murine lupus: role of cytokines. J. Exp. Med. 1998. 187: 525536.
  • 4
    Seelig, H. P., Ehrfeld, H. and Renz, M., Interferon-γ-inducible protein p16. Arthritis Rheum. 1994. 37: 16721683.
  • 5
    Minota, S., Cameron, B., Welch, W. J. and Winfield, J. B., Autoantibodies to the constitutive 73-kD member of the HSP70 family of heat shock proteins in systemic lupus erythematosus. J. Exp. Med. 1988. 168: 14751480.
  • 6
    Tishler, M. and Shoenfeld, Y., Anti-heat shock protein antibodies in rheumatic and autoimmune disease. Semin. Arthritis Rheum. 1996. 26: 558563.
  • 7
    Satoh, M., Langdon, J. J., Chou, C. H., McCauliffe, D. P., Treadwell, E. L., Ogasawara, T., Hirakata, M., Suwa, A., Cohen, P. L., Eisenberg, R. A. and Reeves, W., Characterization of the Su antigen, a macromolecular complex of 100/102 and 200-kDa proteins recognized by autoantibodies in systemic rheumatic diseases. Clin. Immunol. Immunopathol. 1994. 73: 132141.
  • 8
    Hirata, D., Iwamoto, M., Yoshio, T., Okazaki, H., Masuyama, J., Mimori, A. and Minota, S., Nucleolin as the earliest target molecule of autoantibodies produced in MRL/lpr lupus-pronemice. Clin. Immunol. 2000. 97: 5058.
  • 9
    Alvarez-Gonzalez, R., Spring, H., Muller, M. and Burkle, A., Selective loss of poly(ADP-ribose) and the 85-kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylation-induced apoptosis of HeLa cells. J. Biol. Chem. 1999. 274: 3212232126.
  • 10
    Utz, P. J. and Anderson, P., Posttranslational modifications, apoptosis, and bypass of tolerance to autoantigens. Arthritis Rheum. 1998. 41: 11521160.
  • 11
    Utz, P. J., Gensler, T. J. and Anderson, P., Death, autoantigen modifications, and tolerance. Arthritis Res. 2000. 2: 101114.
  • 12
    Kraus, W. L. and Lis, J. T., PARP goes transcription. Science 2003. 113: 677683.
  • 13
    Ginisty, H., Sicard, H., Roger, B. and Bouvet, P., Structure and functions of nucleolin. J. Cell Sci. 1999. 112: 761772.
  • 14
    Van Venrooij, W. and Pruijn, G. J., Ribonucleoprotein complexes as autoantigens. Curr. Opin. Immunol. 1995. 7: 819824.
  • 15
    Casciola-Rosen, L. A., Andrade, F. and Rosen, A., Autoantigens targeted in systemic lupus erytematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 1994. 179: 13171330.
  • 16
    Casciola-Rosen, L., Andrade, F., Ulanet, D., Wong, W. B. and Rosen, A., Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J. Exp. Med. 1999. 190: 815826.
  • 17
    Waterhouse, N., Kumar, S., Song, Q., Strike, P., Sparrow, L., Dreyfuss, G., Alnemri, E. S., Litwack, G., Lavin, M. and Watters, D., Heteronuclear ribonucleoproteins C1 and C2, components of the spliceosome, are specific targets of interleukin 1 beta-converting enzyme-like proteases in apoptosis. J. Biol. Chem. 1996. 271: 2933529341.
  • 18
    Lazebnik, Y., Takahashi, A., Moir, R., Goldman, R., Poirier,G., Kaufmann, S. and Earnshaw, W., Studies of the lamin proteinase reveal multiple parallel biochemical pathways during apoptotic execution. Proc. Natl. Acad. Sci. USA 1995. 92: 90429046.
  • 19
    Broers, J. L., Bronnenberg, N. M., Kuijpers, H. J., Schutte, B., Hutchison, C. J. and Ramaekers, F. C., Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis. Eur. J. Cell Biol. 2002. 81: 677691.
  • 20
    Zeng, D., Lee, M.-K., Tung, J., Brendolan, A. and Strober, S., Cutting edge: a role for CD1 in the pathogenesis of lupus in NZB/NZW mice. J. Immunol. 2000. 164: 50005004.
  • 21
    Sieling, P. A., Porcelli, S. A., Duong, B. T., Spada, F., Bloom, B. R., Diamond, B. and Hahn, B. H., Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c. J. Immunol. 2000. 165: 53385344.
  • 22
    Cheng, L., Dejbakhsh-Jones, S., Liblau, R., Zeng, D. and Strober, S., Different patterns of TCR transgenic expression in single-positive and double-negative cells: evidence for separate pathways of T cell maturation. J. Immunol. 1996. 156: 35923601.
  • 23
    Karwan, R., Bennett, J. L. and Clayton, D. A., Nuclear RNase MRP processes RNA at multiple discrete sites: interaction with an upstream G box is required for subsequent downstream cleavages. Genes Dev. 1991. 5: 12641276.
  • 24
    Utz, P. J., Hottelet, M., Schur, P. and Anderson, P., Proteins phosphorylated during stress-induced apoptosis are common targets for autoantibody production in patients with systemic lupus erythematosus. J. Exp. Med. 1997. 185:843854.
  • 25
    Lanne, B., Potthast, F., Hoglund, A., Brockenhuus von Lowenhielm, H., Nystrom, A. C., Nilsson, F. and Dahllof, B., Thiourea enhances mapping of the proteome from murine white adipose tissue. Proteomics 2001. 1: 819828.
  • 26
    Utz, P. J., Hottelet, M., van Venrooij, W. and Anderson, P., Association of phosphorylated SR proteins and the U1-small nuclear ribonuclear protein autoantigen complex accompanies apoptotic cell death. J. Exp. Med. 1998. 187: 547560.