• 1
    Adkins, B., T cell function in newborn mice and humans. Immunol. Today 1999. 20: 330335.
  • 2
    Billingham, R. W. and Brent, L., Quantitative studies on tissue transplantation immunity. IV. Induction of tolerance in newborn mice and studies on the phenomenon of runt disease. Philos. Trans. R. Soc. Lond. Biol. 1959. 242: 439441.
  • 3
    Field, E. H., Matesic, D., Rigby, S., Fehr, T., Rouse, T. and Gao, Q., CD4+CD25+ regulatory cells in acquired MHC tolerance. Immunol. Rev. 2001. 182: 99112.
  • 4
    Martinez, X., Brandt, C., Saddallah, F., Tougne, C., Barrios,C., Wild, F., Dougan, G., Lambert, P. H. and Siegrist, C. A., DNA immunization circumvents deficient induction of T helper type 1 and cytotoxic T lymphocyte responses in neonates and during early life. Proc. Natl. Acad. Sci. USA 1997. 94: 87268731.
  • 5
    Hassett, D. E., Zhang, J. and Whitton, J. L., Neonatal DNA immunization with a plasmid encoding an internal viral protein is effective in the presence of maternal antibodies and protects against subsequent viral challenge. J. Virol. 1997. 71: 78817888.
  • 6
    Bot, A., Bot, S., Garcia-Sastre, A. and Bona, C., Protective cellular immunity against influenza virus induced by plasmic inoculation of newborn mice. Dev. Immunol. 1998. 5: 197210.
  • 7
    Ishii, K. J., Weiss, W. R. and Klinman, D. M., Prevention of neonatal tolerance by a plasmid encoding granulocyte-macrophage colony stimulating factor. Vaccine 1999. 18: 703710.
  • 8
    Brazolot Millan, C. L., Weeratna, R., Krieg, A. M., Siegrist, C. A. and Davis, H. L., CpG DNA can induce strong Th1 humoral and cell-mediated immune responses against hepatitis B surface antigen in young mice. Proc. Natl. Acad. Sci. USA 1998. 95: 1555315558.
  • 9
    Ridge, J. P., Fuchs, E. J. and Matzinger, P., Neonatal tolerance revisited: turning on newborn T cells with dendritic cells. Science 1996. 271: 17231726.
  • 10
    Donckier, V., Flamand, V., Desalle, F., Vanderhaeghen, M.-L., de Veerman, M., Thielemans, K., Abramowicz, D. and Goldman, M., IL-12 prevents neonatal induction of transplantation tolerance in mice. Eur. J. Immunol. 1998. 28: 14261430.
  • 11
    Zhou, L., Yoshimura, Y., Huang, Y., Suzuki, R., Yokoyama, M., Okabe, M. and Shimamura, M., Two independent pathways of maternal cell transmission to offspring: through placenta during pregnancy and by breast-feeding after birth. Immunology 2000. 101: 570580.
  • 12
    Arvola, M., Gustafsson, E., Svensson, L., Jansson, L., Holmdahl, R., Heyman, B., Okabe, M. and Mattsson, R., Immunoglobulin-secreting cells of maternal origin can be detected in B cell-deficient mice. Biol. Reprod. 2000. 63: 18171824.
  • 13
    Piotrowski, P. and Croy, B. A., Maternal cells are widely distributed in murine fetuses in utero. Biol. Reprod. 1996. 54: 11031110.
  • 14
    Shimamura, M., Ohta, S., Suzuki, R. and Yamazaki, K., Transmission of maternal blood cells to the fetus during pregnancy: detection in mouse neonatal spleen by immunofluorescence flow cytometry and polymerase chain reaction. Blood 1994. 83: 926930.
  • 15
    Launois, P., Conceicao-Silva, F., Himmerlich, H., Parra-Lopez, C., Tacchini-Cottier, F. and Louis, J. A., Setting in motion the immune mechanisms underlying genetically determined resistance and susceptibilityto infection with Leishmania major. Parasite Immunol. 1998. 20: 223230.
  • 16
    Jones, D. E., Elloso, M. M. and Scott, P., Host susceptibility factors to cutaneous leishmaniasis. Front. Biosci. 1998. 3: D1171–D1180.
  • 17
    Siegrist, C. A., Vaccination in the neonatal period and early infancy. Int. Rev. Immunol. 2000. 19: 195219.
  • 18
    Garcia, A. M., Fadel, S. A., Cao, S. and Sarzotti, M., T cell immunity in neonates. Immunol. Res. 2000. 22: 177190.
  • 19
    Adkins, B., Development of neonatal Th1/Th2 function. Int. Rev. Immunol. 2000. 19: 157171.
  • 20
    Billingham, R. E., Brent, L. and Medawar, P. B., Actively acquired tolerance of foreign cells. Nature 1953. 172: 603605.
  • 21
    Turner, J. H., Wald, N. and Quinlivan, W. L., Cytogenetic evidence concerning possible transplacental transfer of leukocytes in pregnant women. Am. J. Obstet. Gynecol. 1966. 95: 831833.
  • 22
    el-Alfi, O. S. and Hathout, H., Maternofetal transfusion: immunologic and cytogenetic evidence. Am. J. Obstet. Gynecol. 1969. 103: 599600.
  • 23
    Socie, G., Gluckman, E., Carosella, E., Brossard, Y., Lafon,C. and Brison, O., Search for maternal cells in human umbilical cord blood by polymerase chain reaction amplification of two minisatellite sequences. Blood 1994. 83: 340344.
  • 24
    Petit, T., Gluckman, E., Carosella, E., Brossard, Y., Brison, O. and Socie, G., A highly sensitive polymerase chain reaction method reveals the ubiquitous presence of maternal cells in human umbilical cord blood. Exp. Hematol. 1995. 23: 16011605.
  • 25
    Hall, J. M., Lingenfelter, P., Adams, S. L., Lasser, D., Hansen, J. A. and Bean, M. A., Detection of maternal cells in human umbilical cord blood using fluorescence in situ hybridization. Blood 1995. 86: 28292832.
  • 26
    Lo, Y. M., Lo, E. S., Watson, N., Noakes, L., Sargent, I. L., Thilaganathan, B. and Wainscoat, J. S., Two-way cell traffic between mother and fetus: biologic and clinical implications. Blood 1996. 88: 43904395.
  • 27
    Srivatsa, B., Srivatsa, S., Johnson, K. L. and Bianchi, D. W., Maternal cell microchimerism in newborn tissues. J. Pediatr. 2003. 142: 3135.
  • 28
    van Rood, J. J. and Claas, F., Both self and non-inherited maternal HLA antigens influence the immune response. Immunol. Today 2000. 21: 269273.
  • 29
    Burlingham, W. J., Grailer, A. P., Heisey, D. M., Claas, F. H., Norman, D., Mohanakumar, T., Brennan, D. C., de Fijter, H., van Gelder, T., Pirsch, J. D., Sollinger, H. W. and Bean, M. A., The effect of tolerance to noninherited maternal HLA antigens on the survival of renal transplants from sibling donors. N. Engl. J. Med. 1998. 339: 16571664.
  • 30
    Flamand, V., Donckier, V., Demoor, F.-X., Le Moine, A., Matthys, P., Vanderhaeghen, M.-L., Tagawa, Y.-I., Iwakura, Y., Billiau, A., Abramowicz, D. and Goldman, M., CD40 ligation prevents neonatal induction of transplantation tolerance. J. Immunol. 1998. 160: 46664669.
  • 31
    van Kooten, C. and Banchereau, J., CD40-CD40 ligand. J. Leukoc. Biol. 2000. 67: 217.
  • 32
    Salomon, B. and Bluestone, J. A., Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 2001. 19: 225252.
  • 33
    Tanaka, J., Asaka, M. and Imamura, M., T cell co-signalling molecules in graft-versus-host disease. Ann. Hematol. 2000. 79: 283290.
  • 34
    Yu, X., Carpenter, P. and Anasetti, C., Advances in transplantation tolerance. Lancet 2001. 357: 19591963.
  • 35
    Yamada and Sayegh, M. H., The CD154-CD40 costimulatory pathway in transplantation. Transplantation 2002. 73: S36–S39.
  • 36
    Diehl, L., Den Boer, A. T., van der Voort, E. I., Melief, C. J., Offringa, R. and Toes, R. E., The role of CD40 in peripheral T cell tolerance and immunity. J. Mol. Med. 2000. 78: 363371.
  • 37
    Adams, B., Nagy, N., Paulart, F., Vanderhaeghen, M. L., Goldman, M. and Flamand, V., CD8+ T lymphocytes regulating Th2 pathology escape neonatal tolerization. J. Immunol. 2003. 171: 50715076.
  • 38
    Field, A. C., Caccavelli, L., Bloch, M. F. and Bellon, B., Regulatory CD8+ T cells control neonatal tolerance to a Th2-mediated autoimmunity. J. Immunol. 2003. 170: 25082515.
  • 39
    Gao, Q., Rouse, T. M., Kazmerzak, K. and Field, E. H., CD4+CD25+ cells regulate CD8 cell anergy in neonatal tolerant mice. Transplantation 1999. 68: 18911897.
  • 40
    Levy, R. B. and Shearer, G. M., Regulation of T cell-mediated lympholysis by the murine major histocompatibility complex. I. Preferential in vitro responses to trinitrophenyl-modified self K- and D-coded gene products in parental and F1 hybrid mouse strains. J. Exp. Med. 1979. 149: 13791392.
  • 41
    Bryant, J., Day, R., Whiteside, T. L. and Herberman, R. B., Calculation of lytic units for the expression of cell-mediated cytotoxicity. J. Immunol. Methods 1992. 146: 91103.
  • 42
    Adkins, B., Bu, Y., Vincek, V. and Guevara, P., The primary responses of murine neonatal lymph node CD4+ cells are Th2-skewed and are sufficient for the development of Th2-biased memory. Clin. Dev. Immunol. 2003. 10: 4351.