• Dendritic cell;
  • Allergy;
  • Th1/Th2;
  • Toll-like receptor;
  • Hygiene hypothesis


Our previous study has shown that Chlamydia lung infection can inhibit local eosinophilic inflammation induced by allergen sensitization and challenge, which is correlated with altered cytokine production. In the present study, we examined the role played by dendritic cells (DC) in chlamydial infection-mediated modulation of allergic responses. The results showed that DC freshlyisolated from Chlamydia-infected mice (iIDC), unlike those from naive control mice (iNDC), could efficiently modulate immune responses to ovalbumin in vitro and in vivo. Co-culture of freshly isolated DC with naive CD4 cells from T cell receptor transgenic mice (DO11.10) showed that iIDC directed Th1-dominant, while iNDC directed Th2-dominant, allergen-specific CD4 T cell responses. Moreover, adoptive transfer of iIDC, but not iNDC, could inhibit systemic and local eosinophilia induced by allergen exposure. The reduction of eosinophilia was associated with a decrease in IL-5 receptor expression on bone marrow cells and the production of IL-5 and IL-13 by T lymphocytes. Analysis of the DC showed that iIDC expressed significantly higher levels of mRNA for Toll-like receptor 9 and produced more IL-12 compared to iNDC. The data demonstrate a critical role played by DC in infection-mediated inhibition of allergic responses.