• 1
    Steinman, R. M. and Nussenzweig, M. C., Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc. Natl. Acad. Sci. USA 2002. 99: 351358.
  • 2
    Medzhitov, R. and Janeway, C. A., Jr., Decoding the patterns of self and nonself by the innate immune system. Science 2002. 296: 298300.
  • 3
    Matzinger, P., The danger model: a renewed sense of self. Science 2002. 296: 301305.
  • 4
    Jonuleit, H., Schmitt, E., Schuler, G., Knop, J. and Enk, A. H., Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J. Exp. Med. 2000. 192: 12131222.
  • 5
    Vosters, O., Neve, J., De Wit, D., Willems, F., Goldman, M. and Verhasselt, V., Dendritic cells exposed to nacystelyn are refractory to maturation and promote the emergence of alloreactive regulatory t cells. Transplantation 2003. 75: 383389.
  • 6
    Hawiger, D., Inaba, K., Dorsett, Y., Guo, M., Mahnke, K., Rivera, M., Ravetch, J. V., Steinman, R. M. and Nussenzweig, M. C., Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 2001. 194: 769779.
  • 7
    Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. and Bhardwaj, N., Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 2001. 193: 233238.
  • 8
    Finkelman, F. D., Lees, A., Birnbaum, R., Gause, W. C. and Morris, S. C., Dendritic cells can present antigen in vivo in a tolerogenic or immunogenic fashion. J. Immunol. 1996. 157: 14061414.
  • 9
    Rudensky, A. Y., Preston-Hurlburt, P., Hong, S. C., Barlow, A. and Janeway, C. A., Jr., Sequence analysis of peptides bound to MHC class II molecules. Nature 1991. 353: 622627.
  • 10
    Chernysheva, A. D., Kirou, K. A. and Crow, M. K., T cell proliferation induced by autologous non-T cells is a response to apoptotic cells processed by dendritic cells. J. Immunol. 2002. 169: 12411250.
  • 11
    Amel Kashipaz, M. R., Huggins, M. L., Powell, R. J. and Todd, I., Human autologous mixed lymphocyte reaction as an in vitro model for autoreactivity to apoptotic antigens. Immunology 2002. 107: 358365.
  • 12
    Weksler, M. E. and Kozak, R., Lymphocyte transformation induced by autologous cells. V. Generation of immunologic memory and specificity during the autologous mixed lymphocyte reaction. J. Exp. Med. 1977. 146: 18331838.
  • 13
    Innes, J. B., Kuntz, M. M., Kim, Y. T. and Weksler, M. E., Induction of suppressor activity in the autologous mixed lymphocyte reaction and in cultures with concanavalin A. J. Clin. Invest 1979. 64: 16081613.
  • 14
    Sakane, T. and Green, I., Specificity and suppressor function of human T cells responsive to autologous non-T cells. J. Immunol. 1979. 123: 584589.
  • 15
    Nussenzweig, M. C. and Steinman, R. M., Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction. J. Exp. Med. 1980. 151: 11961212.
  • 16
    Scheinecker, C., Machold, K. P., Majdic, O., Hocker, P., Knapp, W. and Smolen, J. S., Initiation of the autologous mixed lymphocyte reaction requires the expression of costimulatory molecules B7–1 and B7–2 on human peripheral blood dendritic cells. J. Immunol. 1998. 161: 39663973.
  • 17
    Sallusto, F., Cella, M., Danieli, C. and Lanzavecchia, A., Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 1995. 182: 389400.
  • 18
    Verhasselt, V., Buelens, C., Willems, F., De Groote, D., Haeffner-Cavaillon, N. and Goldman, M., Bacterial lipopolysaccharide stimulates the production of cytokines and the expression of costimulatory molecules by human peripheral blood dendritic cells: evidence for a soluble CD14-dependent pathway. J. Immunol. 1997. 158: 29192925.
  • 19
    Revy, P., Sospedra, M., Barbour, B. and Trautmann, A., Functional antigen-independent synapses formed between T cells and dendritic cells. Nat. Immunol. 2001. 2: 925931.
  • 20
    Romain, P. L., Schlossman, S. F. and Reinherz, E. L., Surface molecules involved in self-recognition and T cell activation in the autologous mixed lymphocyte reaction. J. Immunol. 1984. 133: 10931100.
  • 21
    Jordan, M. S., Boesteanu, A., Reed, A. J., Petrone, A. L., Holenbeck, A. E., Lerman, M. A., Naji, A. and Caton, A. J., Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2001. 2: 301306.
  • 22
    Sakaguchi, S., The origin of FOXP3-expressing CD4+ regulatory T cells: thymus or periphery. J. Clin. Invest 2003. 112: 13101312.
  • 23
    Kemper, C., Chan, A. C., Green, J. M., Brett, K. A., Murphy,K. M. and Atkinson, J. P., Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 2003. 421: 388392.
  • 24
    Paul, A. G., van Kooten, P. J., van Eden, W. and van der Zee, R., Highly autoproliferative T cells specific for 60-kDa heat shock protein produce IL-4/IL-10 and IFN-gamma and are protective in adjuvant arthritis. J. Immunol. 2000. 165: 72707277.
  • 25
    Quintana, F. J., Carmi, P., Mor, F. and Cohen, I. R., Inhibition ofadjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. J. Immunol. 2002. 169: 34223428.
  • 26
    Walker, L. S., Chodos, A., Eggena, M., Dooms, H. and Abbas, A. K., Antigen-dependent proliferation of CD4+ CD25+ regulatory T cells in vivo. J. Exp. Med. 2003. 198: 249258.
  • 27
    Fisson, S., Darrasse-Jeze, G., Litvinova, E., Septier, F., Klatzmann, D., Liblau, R. and Salomon, B. L., Continuous activation of autoreactive CD4+ CD25+ regulatory T cells in the steady state. J. Exp. Med. 2003. 198: 737746.
  • 28
    Kreuwel, H. T. and Sherman, L. A., The T cell repertoire available for recognition of self-antigens. Curr. Opin. Immunol. 2001. 13: 639643.
  • 29
    von Herrath, M. G. and Harrison, L. C., Antigen-induced regulatory T cells in autoimmunity. Nat. Rev. Immunol 2003. 3: 223232.
  • 30
    Inaba, K., Pack, M., Inaba, M., Sakuta, H., Isdell, F. and Steinman, R. M., High levels of a major histocompatibility complex II-self peptide complex on dendritic cells from the T cell areas of lymph nodes. J. Exp. Med. 1997. 186: 665672.
  • 31
    Lohr, J., Knoechel, B., Jiang, S., Sharpe, A. H. and Abbas, A. K., The inhibitory function of B7 costimulators in T cell responses to foreign and self-antigens. Nat. Immunol. 2003. 4: 664669.
  • 32
    Walker, R., Kasprowicz, D. J., Gersuk, V. H., Benard, A., Van Landeghen, M., Buckner, J. H. and Ziegler, S. F., Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25 T cells. J. Clin. Invest 2003. 112: 14371443.
  • 33
    Francois, B. J., Regulatory T cells under scrutiny. Nat. Rev. Immunol. 2003. 3: 189198.
  • 34
    Goldrath, A. W. and Bevan, M. J., Selecting and maintaining a diverse T cell repertoire. Nature 1999. 402: 255262.
  • 35
    Stefanova, I., Dorfman, J. R., and Germain, R. N., Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 2002. 420: 429434.
  • 36
    Taams, L. S. and Wauben, M. H., Anergic T cells as active regulators of the immune response. Hum. Immunol. 2000. 61: 633639.
  • 37
    Feili-Hariri, M., Dong, X., Alber, S. M., Watkins, S. C., Salter, R. D. and Morel, P. A., Immunotherapy of NOD mice with bone marrow-derived dendritic cells. Diabetes 1999. 48: 23002308.
  • 38
    Bhandoola, A., Tai, X., Eckhaus, M., Auchincloss, H., Mason,K., Rubin, S. A., Carbone, K. M., Grossman, Z., Rosenberg, A. S. and Singer, A., Peripheral expression of self-MHC-II influences the reactivity and self-tolerance of mature CD4+ T cells: evidence from a lymphopenic T cell model. Immunity 2002. 17: 425436.
  • 39
    Sadelain, M. W., Qin, H. Y., Lauzon, J. and Singh, B., Prevention of type I diabetes in NOD mice by adjuvant immunotherapy. Diabetes 1990. 39: 583589.
  • 40
    Lehmann, D. and Ben Nun, A., Bacterial agents protect against autoimmune disease. I. Mice pre-exposed to Bordetella pertussis or Mycobacterium tuberculosis are highly refractory to induction of experimental autoimmune encephalomyelitis. J. Autoimmun. 1992. 5: 675690.
  • 41
    Greenwood, B. M., Herrick, E. M. and Voller, A., Suppression of autoimmune disease in NZB and (NZB × NZW) F1 hybrid mice by infection with malaria. Nature 1970. 226: 266267.
  • 42
    Sakane, T., Steinberg, A. D. and Green, I., Failure of autologous mixed lymphocyte reactions between T and non-T cells in patients with systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 1978. 75: 34643468.
  • 43
    Lederman, M. M., Ellner, J. J. and Rodman, H. M., Defective suppressor cell generation in juvenile onset diabetes. J. Immunol. 1981. 127: 20512055.
  • 44
    Bach, J. F., The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med. 2002. 347: 911920.
  • 45
    Romani, N., Reider, D., Heuer, M., Ebner, S., Kampgen, E., Eibl, B., Niederwieser, D. and Schuler, G., Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J. Immunol. Methods 1996. 196: 137151.
  • 46
    Stordeur, P., Poulin, L. F., Craciun, L., Zhou, L., Schandene, L., de Lavareille, A., Goriely, S. and Goldman, M., Cytokine mRNA quantification by real-time PCR. J. Immunol. Methods 2002. 259: 5564.