• 1
    Adu, D., Cockwell, P., Ives, N. J., Shaw, J. and Wheatley, K., Interleukin-2 receptor monoclonal antibodies in renal transplantation: meta-analysis of randomised trials. Brit. Med. J. 2003. 326: 789.
  • 2
    Lawen, J. G., Davies, E. A., Mourad, G., Oppenheimer, F., Molina, M. G., Rostaing, L., Wilkinson, A. H., Mulloy, L. L., Bourbigot, B. J., Prestele, H. et al., Randomized double-blind study of immunoprophylaxis with basiliximab, a chimeric anti-interleukin-2 receptor monoclonal antibody, in combination with mycophenolate mofetil-containing triple therapy in renal transplantation. Transplantation 2003. 75: 3743.
  • 3
    Nashan, B., Moore, R., Amlot, P., Schmidt, A. G., Abeywickrama, K. and Soulillou, J. P., Randomised trial of basiliximab versus placebo for control of acute cellular rejection in renal allograft recipients. CHIB 201 International Study Group. Lancet 1997. 350: 11931198.
  • 4
    Kahan, B. D., Rajagopalan, P. R. and Hall, M., Reduction of the occurrence of acute cellular rejection among renal allograft recipients treated with basiliximab, a chimeric anti-interleukin-2-receptor monoclonal antibody. United States Simulect Renal Study Group. Transplantation 1999. 67: 276284.
  • 5
    Amlot, P. L., Rawlings, E., Fernando, O. N., Griffin, P. J., Heinrich, G., Schreier, M. H., Castaigne, J. P., Moore, R. and Sweny, P., Prolonged action of a chimeric interleukin-2 receptor (CD25) monoclonal antibody used in cadaveric renal transplantation. Transplantation 1995. 60: 748756.
  • 6
    Kircher, B., Latzer, K., Gastl, G. and Nachbaur, D., Comparative in vitro study of the immunomodulatory activity of humanized and chimeric anti-CD25 monoclonal antibodies. Clin. Exp. Immunol. 2003. 134: 426430.
  • 7
    Depper, J. M., Leonard, W. J., Robb, R. J., Waldmann, T. A. and Greene, W. C., Blockade of the interleukin-2 receptor by anti-Tac antibody: inhibition of human lymphocyte activation. J. Immunol. 1983. 131: 690696.
  • 8
    Waldmann, T. A., The IL-2/IL-2 receptor system: a target for rational immune intervention. Trends Pharmacol. Sci. 1993. 14: 159164.
  • 9
    Schluns, K. S. and Lefrancois, L., Cytokine control of memory T-cell development and survival. Nat. Rev. Immunol. 2003. 3: 269279.
  • 10
    Cronin, D. C., Lancki, D. W. and Fitch, F. W., Requirements for activation of CD8+ murine T cells. I. Development of cytolytic activity. Immunol. Res. 1994. 13: 215233.
  • 11
    Gromo, G., Geller, R. L., Inverardi, L. and Bach, F. H., Signal requirements in the step-wise functional maturation of cytotoxic T lymphocytes. Nature 1987. 327: 424426.
  • 12
    Hernandez, J., Aung, S., Marquardt, K. and Sherman, L. A., Uncoupling of proliferative potential and gain of effector function by CD8(+) T cells responding to self-antigens. J. Exp. Med. 2002. 196: 323333.
  • 13
    Lin, C. Y., Graca, L., Cobbold, S. P. and Waldmann, H., Dominant transplantation tolerance impairs CD8+ T cell function but not expansion. Nat. Immunol. 2002. 3: 12081213.
  • 14
    Wells, A. D., Gudmundsdottir, H. and Turka, L. A., Following the fate of individual T cells throughout activation and clonal expansion. Signals from T cell receptor and CD28 differentially regulate the induction and duration of a proliferative response. J. Clin. Invest. 1997. 100: 31733183.
  • 15
    Baan, C. C., Riemsdijk-Overbeeke, I. C., Boelaars-van Haperen, M. J., Ijzermans, J. M. and Weimar, W., Inhibition of the IL-15 pathway in anti-CD25 mAb treated renal allograft recipients. Transpl. Immunol. 2002. 10: 8187.
  • 16
    Baan, C. C., Boelaars-van Haperen, M. J., van Riemsdijk, I. C., van der Plas, A. J. and Weimar, W., IL-7 and IL-15 bypass the immunosuppressive action of anti-CD25 monoclonal antibodies. Transplant. Proc. 2001.33: 22442246.
  • 17
    Waldmann, T. A., The IL-2/IL-15 receptor systems: targets for immunotherapy. J. Clin. Immunol. 2002. 22: 5156.
  • 18
    Kasaian, M. T., Whitters, M. J., Carter, L. L., Lowe, L. D., Jussif, J. M., Deng, B., Johnson, K. A., Witek, J. S., Senices, M., Konz, R. F. et al., IL-21 limits NK cell responses and promotes antigen-specific T cell activation: a mediator of the transition from innate to adaptive immunity. Immunity 2002. 16: 559569.
  • 19
    Oehen, S. and Brduscha-Riem, K., Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J. Immunol. 1998. 161: 53385346.
  • 20
    Gudmundsdottir, H., Wells, A. D. and Turka, L. A., Dynamics and requirements of T cell clonal expansion in vivo at the single-cell level: effector function is linked to proliferative capacity. J. Immunol. 1999. 162: 52125223.
  • 21
    van Stipdonk, M. J., Lemmens, E. E. and Schoenberger, S. P., Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat. Immunol. 2001. 2: 423429.
  • 22
    Kaech, S. M. and Ahmed, R., Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmentalprogram in naive cells. Nat. Immunol. 2001. 2: 415422.
  • 23
    Dallman, M. J., Cytokines as mediators of organ graft rejection and tolerance. Curr. Opin. Immunol. 1993. 5: 788793.
  • 24
    Zeijlemaker, W. P., Van Oers, M. H. and Eijsvoogel, V. P., Human lymphocyte subpopulations involved in MLC and CML. Scand. J. Immunol. 1976. Suppl 5: 143156.
  • 25
    De Jong, R., Brouwer, M., Rebel, V. I., Van Seventer, G. A., Miedema, F. and Van Lier, R. A., Generation of alloreactive cytolytic T lymphocytes by immobilized anti-CD3 monoclonal antibodies. Analysis of requirements for human cytolytic T-lymphocyte differentiation. Immunology 1990. 70: 357364.