• 1
    Beutler, B., Toll-like receptors: how they work and what they do. Curr. Opin. Hematol. 2002. 9: 210.
  • 2
    Takeda, K., Kaisho, T. and Akira, S., Toll-like receptors. Annu. Rev. Immunol. 2003. 21: 335376.
  • 3
    Janeway, C. A. and Medzhitov, R., Innate immune recognition. Annu. Rev. Immunol. 2002. 20: 197216.
  • 4
    Akira, S., Toll-like receptor signaling. J. Biol. Chem. 2003. 278: 3810538106.
  • 5
    Horng, T., Barton, G. M., Flavell, R. A. and Medzhitov, R., The adaptor molecule TIRAP provides signalling specificity for Toll-like receptor. Nature 2002. 420: 329333.
  • 6
    Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K. and Akira, S., Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002. 420: 324328.
  • 7
    Hoebe, K., Du, X., Goergel, P., Janssen, E., Tabeta, K., Kim, S. O., Goode, J., Lin, P., Mann, N., Mudd, S., Crozat, K., Sovath, S., Han, J. and Beutler, B., Identification of Lps2 as a key transducer of MyD88-independent TIR signaling. Nature 2003. 424: 743748.
  • 8
    Yamamoto, M., Sato, S., Hemmi, H., Hoshino, K., Kaisho, T., Sanjo, H., Takeuchi, O., Sugiyama, M., Okabe, M., Takeda, K. and Akira, S., Role of adaptor TRIF in the MyD88-independent Toll-like receptor signaling pathway. Science 2003. 301: 640643.
  • 9
    Weighardt, H., Jusek, G., Mages, J., Lang, R., Hoebe, K., Beutler, B. and Holzmann, B., Identification of a TLR4- and TRIF-dependent activation program of dendritic cells. Eur. J. Immunol. 2004. 34: 558564.
  • 10
    Hoebe, K., Janssen, E. M., Kim, S. O., Alexopoulou, L., Flavell, R. A., Han, J. and Beutler, B., Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways. Nat. Immunol. 2003. 4: 12231229.
  • 11
    Weighardt, H., Kaiser-Moore, S., Vabulas, R. M., Kirschning, C., Wagner, H. and Holzmann, B., Cutting edge: Myeloid differentiation factor 88 deficiency improves resistance against sepsis caused by polymicrobial infection. J. Immunol. 2002. 169: 28232827.
  • 12
    Allavena, P., Bianchi, G., Zhou, D., van Damme, J., Jilek, P., Sozzani, S. and Mantovani, A., Induction of natural killer cell migration by monocyte chemotactic protein-1, -2 and -3. Eur. J. Immunol. 1994. 24: 32333236.
  • 13
    Kuna, P., Reddigari, S. R., Rucinski, D., Oppenheim, J. J. and Kaplan, A. P., Monocyte chemotactic and activating factor is a potent histamine-releasing factor for human basophils. J. Exp. Med. 1992. 1992: 489493.
  • 14
    Bischoff, S. C., Krieger, M., Brunner, T. and Dahinden, C. A., Monocyte chemotactic protein 1 is a potent activator of human basophils. J. Exp. Med. 1992. 175: 12711275.
  • 15
    Alam, R., Lett-Brown, M. A., Forsythe, P. A., Anderson-Walters, D. J., Kenamore, C., Kormos, C. and Grant, J. A., Monocyte chemotactic and activating factor is a potent histamine-releasing factor for basophils. J. Clin. Invest. 1992. 89: 723728.
  • 16
    Carr, M. W., Roth, S. J., Luther, E., Rose, S. S. and Springer, T. A., Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc. Natl. Acad. Sci. USA 1994. 91: 36523656.
  • 17
    Loetscher, P., Seitz, M., Clark-Lewis, I., Baggiolini, M. and Moser, B., Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release. J. Immunol. 1996. 156: 322327.
  • 18
    Zisman, D. A., Kunkel, S. L., Strieter, R. M., Tsai, W. C., Bucknell, K., Wilkowski, J. and Standiford, T. J., MCP-1 protects mice in lethal endotoxemia. J. Clin. Invest. 1997. 99: 28322836.
  • 19
    Matsukawa, A., Hogaboam, C. M., Lukacs, N. W., Lincoln, P. M., Strieter, R. M. and Kunkel, S. L., Endogenous monocyte chemoattractant protein-1 (MCP-1) protects mice in a model of acute septic peritonitis: cross-talk between MCP-1 and leukotriene B4. J. Immunol. 1999. 163: 61486154.
  • 20
    Bossink, A. W., Paemen, L., Jansen, P. M., Hack, C. E., Thijs, L. G. and van Damme, J., Plasma levels of the chemokines monocyte chemotactic proteins-1 and -2 are elevated in human sepsis. Blood 1995. 86: 38413847.
  • 21
    Jansen, P. M., van Damme, J., Put, W., de Jong, I. W., Taylor, F. B. and Hack, C. E., Monocyte chemotactic protein 1 is released during lethal and sublethal bacteremia in baboons. J. Infect. Dis. 1995. 171: 16401642.
  • 22
    Sylvester, I., Suffredini, A. F., Boujoukos, A. J., Martich, G. D., Danner, R. L., Yoshimura, T. and Leonard, E. J., Neutrophil attractant protein-1 and monocyte chemoattractant protein-1 in human serum. Effects of intravenous lipopolysaccharide on free attractants, specific IgG autoantibodies and immune complexes. J. Immunol. 1993. 151: 32923298.
  • 23
    Boring, L., Gosling, J., Monteclaro, F. S., Lusis, A. J., Tsou, C. L. and Charo, I. F., Molecular cloning and functional expression of murine JE (monocyte chemoattractant protein 1) and murine macrophage inflammatory protein 1alpha receptors: evidence for two closely linked C-C chemokine receptors on chromosome 9. J. Biol. Chem. 1996. 271: 75517558.
  • 24
    Garcia-Zepeda, E. A., Combadiere, C., Rothenberg, M. E., Sarafi, M. N., Lavigne, F., Hamid, Q., Murphiy, P. M. and Luster, A. D., Human monocyte chemoattractant protein (MCP)-4 is a novel CC chemokine with activities on monocytes, eosinophils, and basophils induced in allergic and nonallergic inflammation that signals through the chemokine receptors (CCR)-2 and -3. J. Immunol. 1996. 157: 56135626.
  • 25
    Kurihara, T. and Bravo, R., Cloning and functional expression of mCCR2, a murine receptor for the CC chemokines JE and FIC. J. Biol. Chem. 1996. 271: 1160311607.
  • 26
    Sarafi, M. N., Garcia-Zepeda, E. A., MacLean, J. A., Charo, I. F. and Luster, A. D., Murine monocyte chemoattractant protein (MCP)-5: a novel CC chemokine that is a structural and functional homologue of human MCP-1. J. Exp. Med. 1997. 185: 99109.
  • 27
    Boring, L., Gosling, J., Chensue, S. W., Kunkel, S. L., Farese, R. V., Broxmeyer, H. E. and Charo, I. F., Impaired monocyte migration and reduced type1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J. Clin. Invest. 1997. 100: 25522561.
  • 28
    Kurihara, T., Warr, G., Loy, J. and Bravo, R., Defects in macrophage recruitment and host defense in mice lacking the CCR2 chemokine receptor. J. Exp. Med. 1997. 186: 17571762.
  • 29
    Kuziel, W. A., Morgan, S. J., Dawson, T. C., Griffin, S., Smithies, O., Ley, K. and Maeda, N., Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc. Natl. Acad. Sci. USA 1997. 94: 1205312058.
  • 30
    Sato, N., Ahuja, S. K., Quinones, M., Kostecki, V., Reddick, R. L., Melby, P. C., Kuziel, W. A. and Ahuja, S. S., CC chemokine receptor (CCR)2 is required for langerhans cell migration and localization of T helper cell type 1 (Th1)-inducing dendritic cells: absence of CCR2 shifts the Leishmania major-resistant phenotype to a susceptible state dominated by Th2 cytokines, B cell outgrowth, and sustained neutrophilic inflammation. J. Exp. Med. 2000. 192: 205218.
  • 31
    Traynor, T. R., Kuziel, W. A., Toews, G. B. and Huffnagle, G. B., CCR2 expression determines T1 versus T2 polarization during pulmonary Cryptococcus neoformans infection. J. Immunol. 2000. 164: 20212027.
  • 32
    Mack, M., Cihak, J., Simonis, C., Luckow, B., Proudfoot, A. E. I., Plachy, J., Brühl, H., Frink, M., Anders, H.-J., Vielhauer, V., Pfirstinger, J., Stangassinger, M. and Schlöndorff, D., Expression and characterization of the chemokine receptors CCR2 and CCR5 in mice. J. Immunol. 2001. 166: 46974704.
  • 33
    Brühl, H., Cihak, J., Schneider, M. A., Plachy, J., Rupp, T., Wenzel, I., Shakarami, M., Milz, S., Ellwart, J. W., Stangassinger, M., Schlöndorff, D. and Mack, M., Dual role of CCR2 during initiation and progression of collagen-induced arthritis: evidence for regulatory activity of CCR2+ T cells. J. Immunol. 2004. 172: 890898.
  • 34
    Maier, S., Emmanuilidis, K., Entleutner, M., Zantl, N., Werner, M., Pfeffer, K. and Heidecke, C. D., Massive chemokine transcription in acute renal failure due to polymicrobial sepsis. Shock 2001. 14: 187192.
  • 35
    Hotchkiss, R. S. and Karl, I. E., The pathophysiology and treatment of sepsis. New Engl. J. Med. 2003. 348: 138150.
  • 36
    Lehmann, A. K., Halstensen, A., Sornes, S., Rokke, O. and Waage, A., High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. Infect. Immun. 1995. 63: 21092112.
  • 37
    Gogos, C. A., Drosou, E., Bassaris, H. P. and Skoutelis, A., Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J. Infect. Dis. 2000. 181: 176180.
  • 38
    Song, G. Y., Chung, C. S., Chaudry, I. H. and Ayala, A., What is the role of IL-10 in polymicrobial sepsis: anti-inflammatory agent or immunosuppressant? Surgery 1999. 126: 378383.
  • 39
    Steinhauser, M. L., Hogaboam, C. M., Kunkel, S. L., Lukacs, N. W., Strieter, R. M. and Standiford, T. J., IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J. Immunol. 1999. 162: 392399.
  • 40
    Matsukawa, A., Hagaboam, C. M., Lukacs, N. W., Lincoln, P. M., Strieter, R. M. and Kunkel, S. L., Endogenous MCP-1 influences systemic cytokine balance in a murine model of acute septic peritonitis. Exp. Mol. Pathol. 2000. 68: 7784.
  • 41
    Emmanuilidis, K., Weighardt, H., Maier, S., Gerauer, K., Fleischmann, T., Zheng, X. X., Hancock, W. W., Holzmann, B. and Heidecke, C. D., Critical role of Kupffer cell-derived IL-10 for host defense in septic peritonitis. J. Immunol. 2001. 167: 39193927.
  • 42
    Gu, L., Tseng, S., Horner, R. M., Tam, C., Loda, M. and Rollins, B. J., Control of Th2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000. 404: 407411.
  • 43
    Braun, M. C., Lahey, E. and Kelsall, B. L., Selective suppression of IL-12 production by chemoattractants. J. Immunol. 2000. 164: 30093017.
  • 44
    Yoshimura, T., Robinson, E. A., Tanaka, S., Appella, E., Kuratsu, J. and Leonard, E. J., Purification and amino acid analysis of two human glioma-derived monocyte chemoattractants. J. Exp. Med. 1989. 169: 14491459.
  • 45
    Aliprantis, A. O., Yang, R.-B., Weiss, D. S., Godowski, P. and Zychlinsky, A., The apoptotic signaling pathway activated by Toll-like receptor 2. EMBO J. 2000. 19: 33253336.
  • 46
    Han, K-J., Su, X., Xu, L.-G., Bin, L.-H., Zhang, J. and Shu, H.-B., Mechanisms of the TRIF-induced interferon-stimulated response element and NF-κB activation and apoptosis pathways. J. Biol. Chem. 2004. 279: 1565215661.
  • 47
    Dupraz, P., Cottet, S., Hamburger, F., Dolci, W., Felley-Bosco, E. and Thorens, B., Dominant negative MyD88 proteins inhibit interleukin-1beta/interferon-gamma -mediated induction of nuclear factor kappa B-dependent nitrite production and apoptosis in beta cells. J. Biol. Chem. 2000. 275: 3767237678.
  • 48
    Wang, J., Kobayashi, M., Han, M., Choi, S., Takano, M., Hashino, S., Tanaka, J., Kondoh, T., Kawamura, K. and Hosokawa, M., MyD88 is involved in the signalling pathway for taxol-induced apoptosis and TNF-alpha expression in human myelomonocytic cells. Br. J. Haematology 2002. 118: 638645.
  • 49
    Ruckdeschel, K., Mannel, O. and Schrottner, P., Divergence of apoptosis-inducing and preventing signals in bacteria-faced macrophages through myeloid differentiation factor 88 and IL-1 receptor-associated kinase members. J. Immunol. 2002. 68: 46014611.
  • 50
    Bannerman, D. D., Tupper, J. C., Erwert, R. D., Winn, R. K. and Harlan, J. M., Divergence of bacterial lipopolysaccharide pro-apoptotic signaling downstream of IRAK-1. J. Biol. Chem. 2002. 277: 80488053.
  • 51
    Feterowski, C., Weighardt, H., Emmanuilidis, K., Hartung, T. and Holzmann, B., Immune protection against polymicrobial sepsis in endotoxin-primed mice is related to reduced neutrophil apoptosis. Eur. J. Immunol. 2001. 31: 12681277.
  • 52
    Andonegui, G., Bonder, C. S., Green, F., Mullaly, S. C., Zbytnuik, L., Raharjo, E. and Kubes, P., Endothelium-derived Toll-like receptor-4 is the key molecule in LPS-induced neutrophil sequestration into lungs. J. Clin. Invest. 2003. 111: 10111020.
  • 53
    Dalrymple, S. A., Slattery, R., Aud, D. M., Krishna, M., Lucian, L. A. and Murray, R., Interleukin-6 is required for a protective immune response to systemic Escherichia coli infection. Infect. Immun. 1996. 64: 32313235.
  • 54
    Hawkins, H. K., Heffelfinger, S. C. and Anderson, D. C., Leukocyte adhesion deficiency: clinical and postmortem observations. Pediatr. Pathol. 1992. 12: 119130.
  • 55
    Matsumoto, T, Tateda, K., Miyazaki, S., Furuya, N., Ohno, A., Ishii, Y., Hirakata, Y. and Yamaguchi, K., Effect of interleukin-10 on gut-derived sepsis caused by Pseudomonas aeruginosa in mice. Antimicrob. Agents Chemother. 1998. 42: 28532857.
  • 56
    Zantl, N., Uebe, A., Neumann, B., Wagner, H., Siewert, J. R., Holzmann, B., Heidecke, C. D. and Pfeffer, K., Essential role of γ-interferon in survival of colon ascendens stent peritonitis, a novel murine model of abdominal sepsis. Infect. Immun. 1998. 66: 23002309.