SEARCH

SEARCH BY CITATION

  • 1
    Bone, R. C., The pathogenesis of sepsis. Ann. Intern. Med. 1991. 115: 457469.
  • 2
    Heine, H., Rietschel, E. T. and Ulmer, A. J., The biology of endotoxin. Mol. Biotechnol. 2001. 19: 279296.
  • 3
    Zhang, H., Peterson, J. W., Niesel, D. W. and Klimpel, G. R., Bacterial lipoprotein and lipopolysaccharide act synergistically to induce lethal shock and proinflammatory cytokine production. J. Immunol. 1997. 159: 48684878.
  • 4
    Brandt, M. E., Riley, B. S., Radolf, J. D. and Norgard, M. V., Immunogenic integral membrane proteins of Borrelia burgdorferi are lipoproteins. Infect. Immun. 1990. 58: 983991.
  • 5
    Chamberlain, N. R., Brandt, M. E., Erwin, A. L., Radolf, J. D. and Norgard, M. V., Major integral membrane protein immunogens of Treponema pallidum are proteolipids. Infect. Immun. 1989. 57: 28722877.
  • 6
    Reitermann, A., Metzger, J., Wiesmuller, K. H., Jung, G. and Bessler, W. G., Lipopeptide derivatives of bacterial lipoprotein constitute potent immune adjuvants combined with or covalently coupled to antigen or hapten. Biol. Chem. Hoppe Seyler 1989. 370: 343352.
  • 7
    Bessler, W. G., Cox, M., Lex, A., Suhr, B., Wiesmuller, K. H. and Jung, G., Synthetic lipopeptide analogs of bacterial lipoprotein are potent polyclonal activators for murine B lymphocytes. J. Immunol. 1985. 135: 19001905.
  • 8
    Kreutz, M., Ackermann, U., Hauschildt, S., Krause, S. W., Riedel, D., Bessler, W. and Andreesen, R., A comparative analysis of cytokine production and tolerance induction by bacterial lipopeptides, lipopolysaccharides and Staphyloccous aureus in human monocytes. Immunology 1997. 92: 396401.
  • 9
    Bessler, W. G., Heinevetter, L., Wiesmuller, K. H., Jung, G., Baier, W., Huber, M., Lorenz, A. R., Esche, U. V., Mittenbuhler, K. and Hoffmann, P., Bacterial cell wall components as immunomodulators. I. Lipopeptides as adjuvants for parenteral and oral immunization. Int. J. Immunopharmacol. 1997. 19: 547550.
  • 10
    Sellati, T. J., Bouis, D. A., Kitchens, R. L., Darveau, R. P., Pugin, J., Ulevitch, R. J., Gangloff, S. C., Goyert, S. M., Norgard, M. V. and Radolf, J. D., Treponema pallidum and Borrelia burgdorferi lipoproteins and synthetic lipopeptides activate monocytic cells via a CD14-dependent pathway distinct from that used by lipopolysaccharide. J. Immunol. 1998. 160: 54555464.
  • 11
    Heumann, D., Barras, C., Severin, A., Glauser, M. P. and Tomasz, A., Gram-positive cell walls stimulate synthesis of tumor necrosis factor alpha and interleukin-6 by human monocytes. Infect. Immun. 1994. 62: 27152721.
  • 12
    Medzhitov, R. and Janeway, C. A., Jr., Innate immune induction of the adaptive immune response. Cold Spring Harb. Symp. Quant. Biol. 1999. 64: 429435.
  • 13
    Janeway, C. A., Jr. and Medzhitov, R., Innate immune recognition. Annu. Rev. Immunol. 2002. 20: 197216.
  • 14
    Pugin, J., Heumann, I. D., Tomasz, A., Kravchenko, V. V., Akamatsu, Y., Nishijima, M., Glauser, M. P., Tobias, P. S. and Ulevitch, R. J., CD14 is a pattern recognition receptor. Immunity 1994. 1: 509516.
  • 15
    Takeda, K., Kaisho, T. and Akira, S., Toll-like receptors. Annu. Rev. Immunol. 2003. 21: 335376.
  • 16
    Haziot, A., Chen, S., Ferrero, E., Low, M. G., Silber, R. and Goyert, S. M., The monocyte differentiation antigen, CD14, is anchored to the cell membrane by a phosphatidylinositol linkage. J. Immunol. 1988. 141: 547552.
  • 17
    Pfeiffer, A., Bottcher, A., Orso, E., Kapinsky, M., Nagy, P., Bodnar, A., Spreitzer, I., Liebisch, G., Drobnik, W., Gempel, K. et al., Lipopolysaccharide and ceramide docking to CD14 provokes ligand-specific receptor clustering in rafts. Eur. J. Immunol. 2001. 31: 31533164.
  • 18
    Aliprantis, A. O., Yang, R. B., Mark, M. R., Suggett, S., Devaux, B., Radolf, J. D., Klimpel, G. R., Godowski, P. and Zychlinsky, A., Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 1999. 285: 736739.
  • 19
    Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. and Kirschning, C. J., Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 1999. 274: 1740617409.
  • 20
    Lien, E., Sellati, T. J., Yoshimura, A., Flo, T. H., Rawadi, G., Finberg, R. W., Carroll, J. D., Espevik, T., Ingalls, R. R., Radolf, J. D. and Golenbock, D. T., Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 1999. 274: 3341933425.
  • 21
    Opitz, B., Schroder, N. W., Spreitzer, I., Michelsen, K. S., Kirschning, C. J., Hallatschek, W., Zahringer, U., Hartung, T., Gobel, U. B. and Schumann, R. R., Toll-like receptor-2 mediates Treponema glycolipid and lipoteichoic acid-induced NF-kappaB translocation. J. Biol. Chem. 2001. 276: 2204122047.
  • 22
    Werts, C., Tapping, R. I., Mathison, J. C., Chuang, T. H., Kravchenko, V., Saint, G. I, Haake, D. A., Godowski, P. J., Hayashi, F., Ozinsky, A. et al., Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism. Nat. Immunol. 2001. 2: 346352.
  • 23
    Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L. and Aderem, A., The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 2000. 97: 1376613771.
  • 24
    Takeuchi, O., Kawai, T., Muhlradt, P. F., Morr, M., Radolf, J. D., Zychlinsky, A., Takeda, K. and Akira, S., Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int. Immunol. 2001. 13: 933940.
  • 25
    Takeuchi, O., Sato, S., Horiuchi, T., Hoshino, K., Takeda, K., Dong, Z., Modlin, R. L. and Akira, S., Cutting edge: Role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 2002. 169: 1014.
  • 26
    Triantafilou, M. and Triantafilou, K., Lipopolysaccharide recognition: CD14, TLR and the LPS-activation cluster. Trends Immunol. 2002. 23: 301304.
  • 27
    Triantafilou, M., Miyake, K., Golenbock, D. T. and Triantafilou, K., Mediators of innate immune recognition of bacteria concentrate in lipid rafts and facilitate lipopolysaccharide-induced cell activation. J. Cell Sci. 2002. 115: 26032611.
  • 28
    Triantafilou, K., Triantafilou, M. and Dedrick, R. L., A CD14-independent LPS receptor cluster. Nat. Immunol. 2001. 2: 338345.
  • 29
    vd Esche, U., Ayoub, M., Pfannes, S. D., Muller, M. R., Huber, M., Wiesmuller, K. H., Loop, T., Humar, M., Fischbach, K. F., Strunkelnberg, M., Hoffmann, P., Bessler, W. G. and Mittenbuhler, K., Immunostimulation by bacterial components: I. Activation of macrophages and enhancement of genetic immunization by the lipopeptide P3CSK4. Int. J. Immunopharmacol. 2000. 22: 10931102.
  • 30
    Reschner, A., Moretta, A., Landmann, R., Heberer, M., Spagnoli, G. C. and Padovan, E., The ester-bonded palmitoyl side chains of Pam3CysSerLys4 lipopeptide account for its powerful adjuvanticity to HLA class I-restricted CD8+ T lymphocytes. Eur. J. Immunol. 2003. 33: 20442052.
  • 31
    Flo, T. H., Halaas, O., Torp, S., Ryan, L., Lien, E., Dybdahl, B., Sundan, A. and Espevik, T., Differential expression of Toll-like receptor 2 in human cells. J. Leukoc. Biol. 2001. 69: 474481.
  • 32
    Wooten, R. M., Morrison, T. B., Weis, J. H., Wright, S. D., Thieringer, R. and Weis, J. J., The role of CD14 in signaling mediated by outer membrane lipoproteins of Borrelia burgdorferi. J. Immunol. 1998. 160: 54855492.
  • 33
    Hirschfeld, M., Kirschning, C. J., Schwandner, R., Wesche, H., Weis, J. H., Wooten, R. M. and Weis, J. J., Cutting edge: Inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J. Immunol. 1999. 163: 23822386.
  • 34
    Jiang, Q., Akashi, S., Miyake, K. and Petty, H. R., Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J. Immunol. 2000. 165: 35413544.
  • 35
    Pugin, J., Schurer-Maly, C. C., Leturcq, D., Moriarty, A., Ulevitch, R. J. and Tobias, P. S., Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc. Natl. Acad. Sci. USA 1993. 90: 27442748.
  • 36
    Weber, J. R., Freyer, D., Alexander, C., Schroder, N. W., Reiss, A., Kuster, C., Pfeil, D., Tuomanen, E. I. and Schumann, R. R., Recognition of pneumococcal peptidoglycan: an expanded, pivotal role for LPS binding protein. Immunity 2003. 19: 269279.
  • 37
    Schroder, N. W., Heine, H., Alexander, C., Manukyan, M., Eckert, J., Hamann, L., Gobel, U. B. and Schumann, R. R., Lipopolysaccharide binding protein binds to triacylated and diacylated lipopeptides and mediates innate immune responses. J. Immunol. 2004. 173: 26832691.
  • 38
    Lien, E., Means, T. K., Heine, H., Yoshimura, A., Kusumoto, S., Fukase, K., Fenton, M. J., Oikawa, M., Qureshi, N., Monks, B. et al., Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J. Clin. Invest. 2000. 105: 497504.
  • 39
    Bauer, S., Kirschning, C. J., Hacker, H., Redecke, V., Hausmann, S., Akira, S., Wagner, H. and Lipford, G. B., Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 2001. 98: 92379242.
  • 40
    Smith, K. D., Andersen-Nissen, E., Hayashi, F., Strobe, K., Bergman, M. A., Barrett, S. L., Cookson, B. T. and Aderem, A., Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 2003. 4: 12471253.
  • 41
    da Silva, C. J., Soldau, K., Christen, U., Tobias, P. S. and Ulevitch, R. J., Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR4 and MD-2. J. Biol. Chem. 2001. 276: 2112921135.
  • 42
    Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S. and Janeway, C. A., Jr., MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 1998. 2: 253258.
  • 43
    Fitzgerald, K. A., Palsson-McDermott, E. M., Bowie, A. G., Jefferies, C. A., Mansell, A. S., Brady, G., Brint, E., Dunne, A., Gray, P., Harte, M. T., McMurray, D., Smith, D. E., Sims, J. E., Bird, T. A. and O'Neill, L. A., Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001. 413: 7883.
  • 44
    Yamamoto, M., Sato, S., Hemmi, H., Sanjo, H., Uematsu, S., Kaisho, T., Hoshino, K., Takeuchi, O., Kobayashi, M., Fujita, T., Takeda, K. and Akira, S., Essential role for TIRAP in activation of the signaling cascade shared by TLR2 and TLR4. Nature 2002. 420: 324329.
  • 45
    Bazil, V., Horejsi, V., Baudys, M., Kristofova, H., Strominger, J. L., Kostka, W. and Hilgert, I., Biochemical characterization of a soluble form of the 53-kDa monocyte surface antigen. Eur. J. Immunol. 1986. 16: 15831589.
  • 46
    Grage-Griebenow, E., Lorenzen, D., Fetting, R., Flad, H. D. and Ernst, M., Phenotypical and functional characterization of Fc gamma receptor I (CD64)-negative monocytes, a minor human monocyte subpopulation with high accessory and antiviral activity. Eur. J. Immunol. 1993. 23: 31263135.
  • 47
    Delude, R. L., Yoshimura, A., Ingalls, R. R. and Golenbock, D. T., Construction of a lipopolysaccharide reporter cell line and its use in identifying mutants defective in endotoxin, but not TNF-alpha, signal transduction. J. Immunol. 1998. 161: 30013009.
  • 48
    Yoshimura, A., Lien, E., Ingalls, R. R., Tuomanen, E., Dziarski, R. and Golenbock, D., Cutting edge: Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 1999. 163: 15.
  • 49
    Kenworthy, A. K. and Edidin, M., Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J. Cell Biol. 1998. 142: 6984.
  • 50
    Ladha, S., Mackie, A. R., Harvey, L. J., Clark, D. C., Lea, E. J., Brullemans, M. and Duclohier, H., Lateral diffusion in planar lipid bilayers: a fluorescence recovery after photobleaching investigation of its modulation by lipid composition, cholesterol, or alamethicin content and divalent cations. Biophys. J. 1996. 71: 13641373.