SEARCH

SEARCH BY CITATION

  • 1
    Schluter, S. F., Bernstein, R. M., Bernstein, H. and Marchalonis, J. J., ‘Big Bang’ emergence of the combinatorial immune system. Dev. Comp. Immunol. 1999. 23: 107111.
  • 2
    Hood, L., Gray, W. R., Sanders, B. G. and Dreyer, W. J., Light chain evolution. Cold Spring Harb. Symp. Quant. Biol. 1967. 32: 133146.
  • 3
    Gibson, D., Structural studies on normal horse immunoglobulin light chains. Detection of k-type N-terminal sequences. Biochemistry 1974. 13: 27762785.
  • 4
    Foley, R. C. and Beh, K. J., Analysis of immunoglobulin light chain loci in sheep. Anim. Genet. 1992. 23: 3142.
  • 5
    Butler, J. E., Immunoglobulin gene organization and the mechanism of repertoire development. Scand. J. Immunol. 1997. 45: 455462.
    Direct Link:
  • 6
    Bernier, G. M. and Cebra, J. J., Frequency distribution of alpha, gamma, kappa and lambda polypeptide chains in human lymphoid tissues. J. Immunol. 1965. 95: 246253.
  • 7
    Litman, G. W., Anderson, M. K. and Rast, J. P., Evolution of antigen binding receptors. Annu. Rev. Immunol. 1999. 17: 109147.
  • 8
    Hohman, V. S., Schuchman, D. B., Schluter, S. F. and Marchalonis, J. J., Genomic clone for sandbar shark lambda light chain: generation of diversity in the absence of gene rearrangement. Proc. Natl. Acad. Sci. USA 1993. 90: 98829886.
  • 9
    Benammar, A. and Cazenave, P. A., A second rabbit kappa isotype. J. Exp. Med. 1982. 156: 585595.
  • 10
    Mariame, B., Akimenko, M. A. and Rougeon, F., Interallelic and intergenic conversion events could induce differential evolution of the two rabbit immunoglobulin kappa light chain genes. Nucleic Acids Res. 1987. 15: 61716179.
  • 11
    Kawasaki, K., Minoshima, S., Schooler, K., Kudoh, J., Asakawa, S., de Jong, P. J. and Shimizu, N., The organization of the human immunoglobulin lambda gene locus. Genome Res. 1995. 5: 125135.
  • 12
    Selsing, E. and Daitch, L. E., Immunoglobulin λ genes. In Honjo, T. and Alt, F. W. (Eds.) Immunoglobulins genes, 2nd Edn. Academic Press, San Diego 1995, pp 193203.
  • 13
    Haire, R. N., Ota, T., Rast, J. P., Litman, R. T., Chan, F. Y., Zon, L. I. and Litman, G. W., A third Ig light chain gene isotype in Xenopus laevis consists of six distinct VL families and is related to mammalian lambda genes. J. Immunol. 1996. 157: 15441550.
  • 14
    Reynaud, C. A., Anquez, V., Dahan, A. and Weill, J. C., A single rearrangement event generates most of the chicken immunoglobulin light chain diversity. Cell 1985. 40: 283291.
  • 15
    Magor, K. E., Higgins, D. A., Middleton, D. L. and Warr, G. W., cDNA sequence and organization of the immunoglobulin light chain gene of the duck, Anas platyrhynchos. Dev. Comp. Immunol. 1994. 18: 523531.
  • 16
    McCormack, W. T., Carlson, L. M., Tjoelker, L. W. and Thompson, C. B., Evolutionary comparison of the avian IgL locus: combinatorial diversity plays a role in the generation of the antibody repertoire in some avian species. Int. Immunol. 1989. 1: 332341.
  • 17
    Lucero, J. E., Rosenberg, G. H. and Miller, R. D., Marsupial light chains: complexity and conservation of lambda in the opossum Monodelphis domestica. J. Immunol. 1998. 161: 67246732.
  • 18
    Miller, R. D., Bergemann, E. R. and Rosenberg, G. H., Marsupial light chains: IGK with four V families in the opossum Monodelphis domestica. Immunogenetics 1999. 50: 329335.
  • 19
    Belov, K., Harrison, G. A., Miller, R. D. and Cooper, D. W., Characterisation of the kappa light chain of the brushtail possum (Trichosurus vulpecula). Vet. Immunol. Immunopathol. 2001. 78: 317324.
  • 20
    Belov, K., Harrison, G. A., Miller, R. D. and Cooper, D. W., Molecular cloning of four lambda light chain cDNAs from the Australian brushtail possum Trichosurus vulpecula. Eur. J. Immunogenet. 2002. 29: 9599.
  • 21
    Kabat, E., Wu, T. T., Perry, H. M., Gottesman, K. S. and Foeller, C., Sequences of Proteins of Immunological Interest., 5th Edn. US Department of Health and Human Services. National Instiutes of Health, Bethesda 1991
  • 22
    Belov, K. and Hellman, L., Platypus IgM and the divergence of the two extant monotreme lineages. Aust. Mammol. 2003. 25: 8794.
  • 23
    Nowak, M. A., Parra, Z. E., Hellman, L. and Miller, R. D., The complexity of expressed kappa light chains in egg-laying mammals. Immunogenetics 2004. 56: 555563.
  • 24
    Vernersson, M., Aveskogh, M., Munday, B. and Hellman, L., Evidence for an early appearance of modern post-switch immunoglobulin isotypes in mammalian evoluion (II); cloning of IgE, IgG1 and IgG2 from a monotreme, the duck-billed platypus, Ornithorhynchus anatinus. Eur. J. Immunol. 2002. 32: 21452155.
  • 25
    Johansson, J., Aveskogh, M., Munday, B. and Hellman, L., Heavy chain V region diversity in the duck-billed platypus (Ornithorhynchus anatinus): long and highly variable complementarity-determining region 3 compensates for limited germline diversity. J. Immunol. 2002. 168: 51555162.
  • 26
    Ota, T., Sitnikova, T. and Nei, M., Evolution of vertebrate immunoglobulin variable gene segments. Curr. Top. Microbiol. Immunol. 2000. 248: 221245.
  • 27
    Kirschbaum, T., Jaenichen, R. and Zachau, H. G., The mouse immunoglobulin kappa locus contains about 140 variable gene segments. Eur. J. Immunol. 1996. 26: 16131620.
  • 28
    Zachau, H. G., The human immunoglobulin κ genes. In Honjo, T. and Alt, F. W. (Eds.) Immunoglobulin genes, 2nd Edn. Academic Press, San Diego 1995, pp 173191.
  • 29
    Lefranc, M. P., Nomenclature of the human immunoglobulin lambda (IGL) genes. Exp. Clin. Immunogenet. 2001. 18: 242254.
  • 30
    Vasicek, T. J. and Leder, P., Structure and expression of the human immunoglobulin lambda genes. J. Exp. Med. 1990. 172: 609620.
  • 31
    Selsing, E., Miller, J., Wilson, R. and Storb, U., Evolution of mouse immunoglobulin lambda genes. Proc. Natl. Acad. Sci. USA 1982. 79: 46814685.
  • 32
    Steen, M. L., Hellman, L. and Pettersson, U., The immunoglobulin lambda locus in rat consists of two C lambda genes and a single V lambda gene. Gene 1987. 55: 7584.
  • 33
    Hayzer, D. J., Immunoglobulin lambda light chain evolution: Igl and Igl-like sequences form three major groups. Immunogenetics 1990. 32: 157174.
  • 34
    Aveskogh, M. and Hellman, L., Evidence for an early appearance of modern post-switch isotypes in mammalian evolution; cloning of IgE, IgG and IgA from the marsupial Monodelphis domestica. Eur. J. Immunol. 1998. 28: 27382750.
  • 35
    Poorafshar, M., Aveskogh, M., Munday, B. and Hellman, L., Identification and structural analysis of four serine proteases in a monotreme, the platypus, Ornithorhynchus anatinus. Immunogenetics 2000. 52: 1928.
  • 36
    Thompson, J. D., Higgins, D. G. and Gibson, T. J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994. 22: 46734680.