• 1
    Wegiel, J., Wang, K. C., Tarnawski, M. and Lach, B., Microglia cells are the driving force in fibrillar plaque formation, whereas astrocytes are a leading factor in plague degradation. Acta Neuropathol. (Berl.) 2000. 100: 356364.
  • 2
    Wisniewski, H. M. and Wegiel, J., The role of microglia in amyloid fibril formation. Neuropathol. Appl. Neurobiol. 1994. 20: 192194.
  • 3
    Rogers, J. and Lue, L. F., Microglial chemotaxis, activation, and phagocytosis of amyloid beta-peptide as linked phenomena in Alzheimer's disease. Neurochem. Int. 2001. 39: 333340.
  • 4
    Rogers, J., Strohmeyer, R., Kovelowski, C. J. and Li, R., Microglia and inflammatory mechanisms in the clearance of amyloid β peptide. Glia 2002. 40: 260269.
  • 5
    Kreutzberg, G. W., Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996. 19: 312318.
  • 6
    Magnus, T., Chan, A., Savill, J., Toyka, K. V. and Gold, R., Phagocytotic removal of apoptotic, inflammatory lymphocytes in the central nervous system by microglia and its functional implications. J. Neuroimmunol. 2002. 130: 19.
  • 7
    Stalder, A. K., Pagenstecher, A., Yu, N. C., Kincaid, C., Chiang, C. S., Hobbs, M. V., Bloom, F. E. and Campbell, I. L., Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia. J. Immunol. 1997. 159: 13441351.
  • 8
    Wyss-Coray, T., Lin, C., Yan, F., Yu, G. Q., Rohde, M., McConlogue, L., Masliah, E. and Mucke, L., TGF-β1 promotes microglial amyloid-β clearance and reduces plaque burden in transgenic mice. Nat. Med. 2001. 7: 612618.
  • 9
    Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K., Khan, K. et al., Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999. 400: 173177.
  • 10
    Kaku, M., Tsutsui, K., Motokawa, M., Kawata, T., Fujita, T., Kohno, S., Tohma, Y., Ohtani, J., Tenjoh, K. and Tanne, K., Amyloid β protein deposition and neuron loss in osteopetrotic (op/op) mice. Brain Res. Protoc. 2003. 12: 104108.
  • 11
    Tan, J., Town, T., Paris, D., Mori, T., Suo, Z., Crawford, F., Mattson, M. P., Flavell, R. A. and Mullan, M., Microglial activation resulting from CD40-CD40L interaction after β-amyloid stimulation. Science 1999. 286: 23522355.
  • 12
    Tan, J., Town, T., Crawford, F., Mori, T., DelleDonne, A., Crescentini, R., Obregon, D., Flavell, R. A. and Mullan, M. J., Role of CD40 ligand in amyloidosis in transgenic Alzheimer's mice. Nat. Neurosci. 2002. 5: 12881293.
  • 13
    van Kooten, C. and Banchereau, J., CD40-CD40 ligand. J. Leukoc. Biol. 2000. 67: 217.
  • 14
    Togo, T., Akiyama, H., Kondo, H., Ikeda, K., Kato, M., Iseki, E. and Kosaka, K., Expression of CD40 in the brain of Alzheimer's disease and other neurological diseases. Brain Res. 2000. 885: 117121.
  • 15
    Calingasan, N. Y., Erdely, H. A. and Altar, C. A., Identification of CD40 ligand in Alzheimer's disease and in animal models of Alzheimer's disease and brain injury. Neurobiol. Aging 2002. 23: 3139.
  • 16
    Kikuchi, T., Worgall, S., Singh, R., Moore, M. A. and Crystal, R.G., Dendritic cells genetically modified to express CD40 ligand and pulsed with antigen can initiate antigen-specific humoral immunity independent of CD4+ T cells. Nat. Med. 2000. 6: 11541159.
  • 17
    McLellan, A., Heldmann, M., Terbeck, G., Weih, F., Linden, C., Brocker, E. B., Leverkus, M. and Kampgen, E., MHC class II and CD40 play opposing roles in dendritic cell survival. Eur. J. Immunol. 2000. 30: 26122619.
  • 18
    Bard, F., Cannon, C., Barbour, R., Burke, R. L., Games, D., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson-Wood, K. et al., Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 2000. 8: 916919.
  • 19
    Webster, S. D., Park, M., Fonseca, M. I. and Tenner, A. J., Structural and functional evidence for microglial expression of C1qR(P), the C1q receptor that enhances phagocytosis. J. Leukoc. Biol. 2000. 67: 109116.
  • 20
    Webster, S. D., Yang, A. J., Margol, L., Garzon-Rodriguez, W., Glabe, C. G. and Tenner, A. J., Complement component C1q modulates the phagocytosis of Aβ by microglia . Exp. Neurol. 2000. 161: 127138.
  • 21
    Dong, C. and Flavell, R. A., Th1 and Th2 cells. Curr. Opin. Hematol. 2001. 8: 4751.
  • 22
    Chow, A., Toomre, D., Garrett, W. and Mellman, I., Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 2002. 418: 988994.
  • 23
    Perlmutter, L. S., Scott, S. A., Barron, E. and Chui, H. C., MHC class II-positive microglia in human brain: association with Alzheimer lesions. J. Neurosci. Res. 1992. 33: 549558.
  • 24
    Liew, S. C., Penfold, P. L., Provis, J. M., Madigan, M. C. and Billson, F. A., Modulation of MHC class II expression in the absence of lymphocytic infiltrates in Alzheimer's retinae. J. Neuropathol. Exp. Neurol. 1994. 53: 150157.
  • 25
    Matsushima, G. K., Taniike, M., Glimcher, L. H., Grusby, M. J., Frelinger, J. A., Suzuki, K. and Ting, J. P., Absence of MHC class II molecules reduces CNS demyelination, microglial/macrophage infiltration, and twitching in murine globoid cell leukodystrophy. Cell 1994. 78: 645656.
  • 26
    Matyszak, M. K., Denis-Donini, S., Citterio, S., Longhi, R., Granucci, F. and Ricciardi-Castagnoli, P., Microglia induce myelin basic protein-specific T cell anergy or T cell activation, according to their state of activation. Eur. J. Immunol. 1999. 29: 30633076.
  • 27
    Aloisi, F., De Simone, R., Columba-Cabezas, S., Penna, G. and Adorini, L., Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte-macrophage colony-stimulating factor and interaction with Th1 cells. J. Immunol. 2000. 164: 17051712.
  • 28
    O'Keefe, G. M., Nguyen, V. T. and Benveniste, E. N., Regulation and function of class II major histocompatibility complex, CD40, and B7 expression in macrophages and microglia: implications in neurological diseases. J. Neurovirol. 2002. 8: 496512.
  • 29
    Santambrogio, L., Belyanskaya, S. L., Fischer, F. R., Cipriani, B., Brosnan, C. F., Ricciardi-Castagnoli, P., Stern, L. J., Strominger, J. L. and Riese, R., Developmental plasticity of CNS microglia. Proc. Natl. Acad. Sci. USA. 2001. 98: 62956300.
  • 30
    Nakamura, Y., Regulating factors for microglial activation. Biol. Pharm. Bull. 2002. 25: 945953.
  • 31
    Frackowiak, J., Wisniewski, H. M., Wegiel, J., Merz, G. S., Iqbal, K. and Wang, K. C., Ultrastructure of the microglia that phagocytose amyloid and the microglia that produce β-amyloid fibrils. Acta Neuropathol. (Berl.) 1992. 84: 225233.
  • 32
    Bamberger, M. E., Harris, M. E., McDonald, D. R., Husemann, J. and Landreth, G. E., A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J. Neurosci. 2003. 23: 26652674.
  • 33
    Koenigsknecht, J. and Landreth, G., Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J. Neurosci. 2004. 24: 98389846.
  • 34
    Ferrer, I., Boada Rovira, M., Sanchez Guerra, M. L., Rey, M. J. and Costa-Jussa, F., Neuropathology and pathogenesis of encephalitis following amyloid-β immunization in Alzheimer's disease. Brain Pathol. 2004. 14: 1120.
  • 35
    Becker, T., Hartl, F. U. and Wieland, F., CD40, an extracellular receptor for binding and uptake of HSP70-peptide complexes. J. Cell Biol. 2002. 158: 12771285.
  • 36
    Kakimura, J., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., Shibagaki, K., Taniguchi, T., Nomura, Y., Gebicke-Haerter, P. J., Smith, M. A. et al., Microglial activation and amyloid-β clearance induced by exogenous heat-shock proteins. FASEB J. 2002. 16: 601603.
  • 37
    Tan, J., Town, T. and Mullan, M., CD45 inhibits CD40L-induced microglial activation via negative regulation of the Src/p44/42 MAPK pathway. J. Biol. Chem. 2000. 275: 3722437231.
  • 38
    Chung, H., Brazil, M. I., Soe, T. T. and Maxfield, F. R., Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid β-peptide by microglial cells. J. Biol. Chem. 1999. 274: 3230132308.
  • 39
    Mitrasinovic, O. M. and Murphy, G. M., Jr., Accelerated phagocytosis of amyloid-β by mouse and human microglia overexpressing the macrophage colony-stimulating factor receptor. J. Biol. Chem. 2002. 277: 2988929896.
  • 40
    Tan, J., Town, T., Paris, D., Placzek, A., Parker, T., Crawford, F., Yu, H., Humphrey, J. and Mullan, M., Activation of microglial cells by the CD40 pathway: relevance to multiple sclerosis. J. Neuroimmunol. 1999. 97: 7785.
  • 41
    Town, T., Vendrame, M., Patel, A., Poetter, D., DelleDonne, A., Mori, T., Smeed, R., Crawford, F., Klein, T., Tan, J. et al., Reduced Th1 and enhanced Th2 immunity after immunization with Alzheimer's β-amyloid (1–42). J. Neuroimmunol. 2002. 132: 4959.