SEARCH

SEARCH BY CITATION

  • 1
    Greenberg, A. S., Avila, D., Hughes, M., McKinney, E. C. and Flajnik, M. F., A new antigen receptor family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 1995. 374: 168173.
  • 2
    Clem, L. W. and Small, P. A., Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark. J. Exp. Med. 1967. 125: 893920.
  • 3
    Small, P. A., Klapper, D. G. and Clem, L. W., Half-lives, body distribution and lack of interconversion of serum 19S and 7S IgM of sharks. J. Immunol. 1970. 105: 2937.
  • 4
    Voss, E. W. and Sigel., M. M., Distribution of 19S and 7S IgM antibodies during the immune response in the nurse shark. J. Immunol. 1971. 106: 13231329.
  • 5
    Roux, K. H., Greenberg, A. S., Greene, L., Strelets, L., Avila, D., McKinney, E. C. and Flajnik, M. F., Structural analysis of the nurse shark (new) antigen receptor (NAR): Molecular convergence of NAR and unusual mammalian immunoglobulins. Proc. Nat. Acad. Sci. USA 1998. 95: 1180411809.
  • 6
    Greenberg, A. S., Hughes, A. L., Guo, J., Avila, D., McKinney, E. C. and Flajnik, M. F., A novel ‘chimeric’ antibody class in cartilaginous fish: IgM may not be the primordial immunoglobulin. Eur. J. Immunol. 1996. 26: 11231129.
  • 7
    Kobayashi, K., Tomonaga, S. and Kajii, T., A second class of immunoglobulin other than IgM present in the serum of a cartilaginous fish, the skate, Raja kenojei: Isolation and characterization. Mol. Immunol. 1984. 21: 397404.
  • 8
    Anderson, M. K., Strong, S. J., Litman, R. T., Luer, C. A., Amemiya, C. T., Rast, J. P. and Litman, G. W., A long form of the skate IgX gene exhibits a striking resemblance to the new shark IgW and IgNARC genes. Immunogenetics 1999. 49: 5667.
  • 9
    Rumfelt, L. L., Diaz, M., Lohr, R. L., Mochon, E. and Flajnik, M. F., Unprecedented multiplicity of immunoglobulin transmembrane and secretory forms in the cartilaginous fish. J. Immunol. 2004. 173: 11291139.
  • 10
    Hinds, K. R. and Litman, G. W., Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 1986. 320: 546551.
  • 11
    Kokubu, F., Hinds, K., Litman, R., Shamblott, M. J. and Litman, G. W., Diverse organization of immunoglobulin VH gene loci in a primitive vertebrate. EMBO J. 1988. 7: 19791988.
  • 12
    Lee, S. S., Fitch, D., Flajnik, M. F. and Hsu, E., Rearrangement of immunoglobulin genes in shark germ cells. J. Exp. Med. 2000. 191: 16371647.
  • 13
    Sigel, M. M. and Clem, L. W., Immunologic anamnesis in elasmobranchs. In: Smith, R. T., Miescher, P. A. and Good, R. A. (Eds.) Phylogeny of Immunity. University of Florida Press, Gainsville 1966, Pp 190197.
  • 14
    Clem, L. W., De Boutaud, F. and Sigel, M. M., Phylogeny of immunoglobulin structure and function. II. Immunoglobulins of the nurse shark. J. Immunol. 1967. 99: 12261235.
  • 15
    Leslie, G. A. and Clem, L. W., Reactivity of normal shark immunoglobulins with nitrophenyl ligands. J. Immunol. 1970. 105: 15471552.
  • 16
    Voss, E. W. and Sigel, M. M., Valence and temporal change in affinity of purified 7S and 18S nurse shark anti-2,4-dinitrophenyl antibodies. J. Immunol. 1972. 109: 665673.
  • 17
    Shankey, T. V. and Clem, L. W., Phylogeny of immunoglobulin structure and function – IX. J. Immunol. 1980. 125: 26902698.
  • 18
    Makela, O. and Litman, G. W., Lack of heterogeneity in anti-hapten antibodies of a phylogenetically primitive shark. Nature 1980. 287: 639640.
  • 19
    Shankey, T. V. and Clem, L. W., Phylogeny of immunoglobulin structure and function – VIII. Molec. Immunol. 1980. 17: 365375.
  • 20
    Zapata, A. and Amemiya, C. T., Phylogeny of lower vertebrates and their immunological structures. Curr. Top. Microbiol. Immunol. 2000. 248: 67107.
  • 21
    Diaz, M., Velez, J., Singh, M., Cerny, J. and Flajnik, M. F., Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int. Immunol. 1999. 11: 825833.
  • 22
    Diaz, M., Greenberg, A. S. and Flajnik, M. F., Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: Possible role in antigen-driven reactions in the absence of germinal centers. Proc. Nat. Acad. Sci. USA 1998. 95: 1434314348.
  • 23
    Lee, S. S., Tranchina, D., Ohta, Y., Flajnik, M. F. and Hsu, E., Hypermutation in shark immunoglobulin light chain results in contiguous substitutions. Immunity 2002. 16: 571582.
  • 24
    Diaz, M., Stanfield, R. L., Greenberg, A. S. and Flajnik, M. F., Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics 2002. 54: 501512.
  • 25
    Macdonald, R. A., Hosking, C. S. and Jones, C. L., The measurement of relative antibody affinity by ELISA using thiocyanate elution. J. Immunol. Methods 1988. 106: 191194.
  • 26
    McCloskey, N., Turner, M. W. and Goldblatt, D., Correlation between the avidity of mouse-human chimeric IgG subclass monoclonal antibodies measured by solid-phase elution ELISA and biospecific interaction analysis (BIA). J. Immunol. Methods 1997. 205: 6772.
  • 27
    Fontana, A., Fassina, G., Vita, C., Dalzoppo, D., Zamai, M. and Zambonin, M., Correlation between sites of limited proteolysis and segmental mobility in thermolysin. Biochem. 1986. 25: 18471850.
  • 28
    Magor, K. E., Warr, G. W., Middleton, D., Wilson, M. R. and Higgins, D. A., Structural relationship between the two IgY of duck, Anas platyrhynchos: molecular genetic evidence. J. Immunol. 1992. 149: 26272633.
  • 29
    Ota, T., Rast, J. P., Litman, G. W. and Amemiya, C. T., Lineage-restricted retention of a primitive immunoglobulin heavy chain isotype within the Dipnoi reveals an evolutionary paradox. Proc. Nat. Acad. Sci. USA 2003. 100: 25012506.
  • 30
    Humphrey, B. D., Calvert, C. C. and Klasing, K. C., The ratio of full length IgY to truncated IgY in immune complexes affects macrophage phagocytosis and the acute phase response of mallard ducks (Anas platyrhynchos). Dev. Comp. Immunol. 2004. 28: 665672.
  • 31
    Marchalonis, J. J., Hohman, V. S., Thomas, C. and Schluter, S. F., Antibody production in sharks and humans: a role for natural antibodies. Dev. Comp. Immunol. 1993. 17: 4153.
  • 32
    Frommel, D., Litman, G. W., Finstad, J. and Good, R. A., The evolution of the immune response. XI. The immunoglobulins of the horned shark Heterodontus francisci. J. Immunol. 1971. 106: 12341243.
  • 33
    Flajnik, M. F. and Rumfelt, L. L., The immune system of cartilaginous fish. Curr. Top. Microbiol. Immunol. 2000. 248: 3750.
  • 34
    Clem, L. W. and Leslie, G. A., Production of 19S IgM antibodies with restricted heterogeneity from sharks. Proc. Natl. Acad. Sci. USA 1971. 68: 139141.
  • 35
    Calame, K. L., Plasma cells: finding new light at the end of B cell development. Nat. Immunol. 2001. 2: 11031108.
  • 36
    Rumfelt, L. L., McKinney, E. C., Taylor, E. and Flajnik, M. F., The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B cell zones precede dendritic cell immigration and T cell zone formation during ontogeny of the spleen. Scand. J. Immunol. 2002. 56: 130148.
  • 37
    Hsu, E., Mutation, selection and memory in B lymphocytes of exothermic vertebrates. Immunol. Rev. 1998. 162: 2536.
  • 38
    Klapper, D. G. and Clem, L. W., Studies on the mild reduction of shark polymeric and monomeric IgM. Comp. Biochem. Physiol. A 1972. 42: 241247.