• 1
    Yewdell, J. W. and Bennink, J. R., Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu. Rev. Immunol. 1999. 17: 5188.
  • 2
    Craiu, A., Akopian, T., Goldberg, A. and Rock, K. L., Two distinct proteolytic processes in the generation of a major histocompatibility complex class I presented peptide. Proc. Natl. Acad. Sci. USA 1997. 94: 1085010855.
  • 3
    Stoltze, L., Dick, T. P., Deeg, M., Pommerl, B., Rammensee, H. G. and Schild, H., Generation of the vesicular stomatitis virus nucleoprotein cytotoxic T lymphocyte epitope requires proteasome-dependent and -independent proteolytic activities. Eur. J. Immunol. 1998. 28: 40294036.
  • 4
    Paz, P., Brouwenstijn, N., Perry, R. and Shastri, N., Discrete proteolytic intermediates in the MHC class I antigen processing pathway and MHC I-dependent peptide trimming in the ER. Immunity 1999. 11: 241251.
  • 5
    Mo, X. Y., Cascio, P., Lemerise, K., Goldberg, A. L. and Rock, K., Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J. Immunol. 1999. 163: 58515859.
  • 6
    Altuvia, Y. and Margalit, H., Sequence signals for generation of antigenic peptides by the proteasome: implications for proteasomal cleavage mechanism. J. Mol. Biol. 2000. 295: 879890.
  • 7
    Levy, F., Burri, L., Morel, S., Peitrequin, A. L., Levy, N., Bachi, A., Hellman, U. et al., The final N-terminal trimming of a subaminoterminal proline-containing HLA class I-restricted antigenic peptide in the cytosol is mediated by two peptidases. J. Immunol. 2002. 169: 41614171.
  • 8
    Stoltze, L., Schirle, M., Schwarz, G., Schroter, C., Thompson, M. W., Hersh, L. B., Kalbacher, H. et al., Two new proteases in the MHC class I processing pathway. Nat. Immunol. 2000. 1: 413418.
  • 9
    Kesmir, C., Nussbaum, A. K., Schild, H., Detours, V. and Brunak, S., Prediction of proteasome cleavage motifs by neural networks. Protein. Eng. 2002. 15: 287296.
  • 10
    Endert, v. P. M., Riganelli, D., Greco, G., Fleischhauer, K., Sidney, J., Sette, A. and Bach, J. F., The peptide-binding motif for the human transporter associated with antigen processing. J. Exp. Med. 1995. 182: 18831895.
  • 11
    Brusic, V., Rudy, G. and Harrison, L. C., Prediction of MHC binding peptides using artificial neural networks. In Stonier, R. J. and Yu, X. S. (Eds.) Complex systems: mechanism of adaptation. IOS Press, Amsterdam 1994, pp 253260.
  • 12
    Buus, S., Lauemoller, S. L., Worning, P., Kesmir, C., Frimurer, T., Corbet, S., Fomsgaard, A. et al., Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 2003. 62: 378384.
  • 13
    Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S. L., Lamberth, K., Buus, S., Brunak, S. and Lund, O., Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 2003. 12: 10071017.
  • 14
    Nielsen, M., Lundegaard, C., Worning, P., Hvid, C. S., Lamberth, K., Buus, S., Brunak, S. and Lund, O., Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 2004. 20: 13881397.
  • 15
    Brusic, V., van Endert, P., Zeleznikow, J., Daniel, S., Hammer, J. and Petrovsky, N., A neural network model approach to the study of human TAP transporter. In Silico Biol 1999. 1: 109121.
  • 16
    Peters, B., Bulik, S., Tampe, R., Endert, P. M. V. and Holzhutter, H. G., Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J. Immunol. 2003. 171: 17411749.
  • 17
    Kesmir, C., Nussbaum, A. K., Schild, H., Detours, V. and Brunak, S., Prediction of proteasome cleavage motifs by neural networks. Protein Eng. 2002. 15: 287296.
  • 18
    Nielsen, M., Lundegaard, C., Lund, O. and Kesmir, C., The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005. 57: 3341.
  • 19
    Sette, A. and Sidney, J., HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr. Opin. Immunol. 1998. 10: 478482.
  • 20
    Lund, O., Nielsen, M., Kesmir, C., Petersen, A. G., Lundegaard, C., Worning, P., Sylvester-Hvid, C. et al., Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 2004. 55: 797810.
  • 21
    Rammensee, H., Bachmann, J., Emmerich, N. P., Bachor, O. A. and Stevanovic, S., SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999. 50: 213219.
  • 22
    Parker, K. C., Bednarek, M. A. and Coligan, J. E., Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 1994. 152: 163175.
  • 23
    Rammensee, H. G., Bachmann, J. and Stevanovic, S., MHC ligands and Peptide Motifs. Chapman & Hall, New York: 1997.
  • 24
    Hakenberg, J., Nussbaum, A. K., Schild, H., Rammensee, H. G., Kuttler, C., Holzhutter, H. G., Kloetzel, P. M. et al., MAPPP: MHC class I antigenic peptide processing prediction. Appl. Bioinformatics 2003. 2: 155158.
  • 25
    Sturniolo, T., Bono, E., Ding, J., Raddrizzani, L., Tuereci, O., Sahin, U., Braxenthaler, M. et al., Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol. 1999. 17: 555561.
  • 26
    Swets, J. A., Measuring the accuracy of diagnostic systems. Science 1988. 240: 12851293.
  • 27
    Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. T., Numerical Recipies in C: The Art of Scientific Computing, 2nd Edn. Cambridge University Press, Cambridge 1992