• 1
    Kronenberg, M. and Gapin, L., The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2002. 2: 557568.
  • 2
    Taniguchi, M., Harada, M., Kojo, S., Nakayama, T. and Wakao, H., The regulatory role of Valpha14 NKT cells in innate and acquired. Annu. Rev. Immunol. 2003. 21: 483513.
  • 3
    Godfrey, D. I. and Kronenberg, M., Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 2004. 114: 13791388.
  • 4
    Hammond, K. J. and Kronenberg, M., Natural killer T cells: natural or unnatural regulators of autoimmunity? Curr. Opin. Immunol. 2003. 15: 683689.
  • 5
    Smyth, M. J., Crowe, N. Y., Hayakawa, Y., Takeda, K., Yagita, H. and Godfrey, D. I., NKT cells – conductors of tumor immunity? Curr. Opin. Immunol. 2002. 14: 165171.
  • 6
    Gumperz, J. E. and Brenner, M. B., CD1-specific T cells in microbial immunity. Curr. Opin. Immunol. 2001. 13: 471478.
  • 7
    Park, S. H. and Bendelac, A., CD1-restricted T cell responses and microbial infection. Nature 2000. 406: 788792.
  • 8
    Sumida, T., Sakamoto, A., Murata, H., Makino, Y., Takahashi, H., Yoshida, S., Nishioka, K., Iwamoto, I. and Taniguchi, M., Selective reduction of T cells bearing invariant V alpha 24J alpha Q antigen receptor in patients with systemic sclerosis. J. Exp. Med. 1995. 182: 11631168.
  • 9
    van der Vliet, H. J. J., von Blomberg, B. M. E., Nishi, N., Reijm, M., Voskuyl, A. E., van Bodegraven, A. A., Polman, C. H., Rustemeyer, T., Lips, P., van den Eertwegh et al., Circulating V alpha 24(+) V beta 11(+) NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin. Immunol. 2001. 100: 144148.
  • 10
    Wilson, S. B., Kent, S. C., Patton, K. T., Orban, T., Jackson, R. A., Exley, M., Porcelli, S., Schatz, D. A., Atkinson, M. A., Balk et al., Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature 1998. 391: 177181.
  • 11
    Dhodapkar, M. V., Geller, M. D., Chang, D. H., Shimizu, K., Fujii, S., Dhodapkar, K. M. and Krasovsky, J., A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J. Exp. Med. 2003. 197: 16671676.
  • 12
    Lee, P. T., Putnam, A., Benlagha, K., Teyton, L., Gottlieb, P. A. and Bendelac, A., Testing the NKT cell hypothesis of human IDDM pathogenesis. J. Clin. Invest. 2002. 110: 793800.
  • 13
    Hammond, K. J., Pellicci, D. G., Poulton, L. D., Naidenko, O. V., Scalzo, A. A., Baxter, A. G. and Godfrey, D. I., CD1d-restricted NKT cells: an interstrain comparison. J. Immunol. 2001. 167: 11641173.
  • 14
    Pellicci, D. G., Hammond, K. J., Uldrich, A. P., Baxter, A. G., Smyth, M. J. and Godfrey, D. I., A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(-)CD4(+) CD1d-dependent precursor stage. J. Exp. Med. 2002. 195: 835844.
  • 15
    Benlagha, K., Kyin, T., Beavis, A., Teyton, L. and Bendelac, A., A thymic precursor to the NK T cell lineage. Science 2002. 296: 553555.
  • 16
    Gadue, P. and Stein, P. L., NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J. Immunol. 2002. 169: 23972406.
  • 17
    MacDonald, H. R., Development and selection of NKT cells. Curr. Opin. Immunol. 2002. 14: 250254.
  • 18
    Berzins, S. P., Uldrich, A. P., Pellicci, D. G., McNab, F., Hayakawa, Y., Smyth, M. J. and Godfrey, D. I., Parallels and distinctions between T and NKT cell development in the thymus. Immunol. Cell Biol. 2004. 82: 269275.
    Direct Link:
  • 19
    Pear, W. S., Tu, L. and Stein, P. L., Lineage choices in the developing thymus: choosing the T and NKT pathways. Curr. Opin. Immunol. 2004. 16: 167173.
  • 20
    Gurney, K. B., Yang, O. O., Wilson, S. B. and Uittenbogaart, C. H., TCR gamma delta(+) and CD161(+) thymocytes express HIV-1 in the SCID-hu mouse, potentially contributing to immune dysfunction in HIV infection. J. Immunol. 2002. 169: 53385346.
  • 21
    Sandberg, J. K., Stoddart, C. A., Brilot, F., Jordan, K. A. and Nixon, D. F., Development of innate CD4+ alpha-chain variable gene segment 24 (Valpha24) natural killer T cells in the early human fetal thymus is regulated by IL-7. Proc. Natl. Acad. Sci. USA 2004. 101: 70587063.
  • 22
    Baev, D. V., Peng, X. H., Song, L., Barnhart, J. R., Crooks, G. M., Weinberg, K. I. and Metelitsa, L. S., Distinct homeostatic requirements of CD4+ and CD4 subsets of V{alpha}24-invariant natural killer T cells in humans. Blood 2004. 104: 41504156.
  • 23
    Thomas, S. Y., Hou, R., Boyson, J. E., Means, T. K., Hess, C., Olson, D. P., Strominger, J. L., Brenner, M. B., Gumperz, J. E., Wilson, S. B. and Luster, A. D., CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol. 2003. 171: 25712580.
  • 24
    Lee, P. T., Benlagha, K., Teyton, L. and Bendelac, A., Distinct functional lineages of human V(alpha)24 natural killer T cells. J. Exp. Med. 2002. 195: 637641.
  • 25
    D'Andrea, A., Goux, D., De Lalla, C., Koezuka, Y., Montagna, D., Moretta, A., Dellabona, P., Casorati, G. and Abrignani, S., Neonatal invariant Valpha24+ NKT lymphocytes are activated memory cells. Eur. J. Immunol. 2000. 30: 15441550.
  • 26
    Starborg, M., Gell, K., Brundell, E. and Hoog, C., The murine Ki-67 cell proliferation antigen accumulates in the nucleolar and heterochromatic regions of interphase cells and at the periphery of the mitotic chromosomes in a process essential for cell cycle progression. J. Cell Sci. 1996. 109: 143153.
  • 27
    Schluter, C., Duchrow, M., Wohlenberg, C., Becker, M. H., Key, G., Flad, H. D. and Gerdes, J., The cell proliferation-associated antigen of antibody Ki-67: a very large, ubiquitous nuclear protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J. Cell Biol. 1993. 123: 513522.
  • 28
    Sachsenberg, N., Perelson, A. S., Yerly, S., Schockmel, G. A., Leduc, D., Hirschel, B. and Perrin, L., Turnover of CD4+ and CD8+ T lymphocytes in HIV-1 infection as measured by Ki-67 antigen. J. Exp. Med. 1998. 187: 12951303.
  • 29
    Gumperz, J. E., Miyake, S., Yamamura, T. and Brenner, M. B., Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 2002. 195: 625636.
  • 30
    Rogers, P. R., Matsumoto, A., Naidenko, O., Kronenberg, M., Mikayama, T. and Kato, S., Expansion of human Valpha24+ NKT cells by repeated stimulation with KRN7000. J. Immunol. Methods 2004. 285: 197214.
  • 31
    Takahashi, T., Chiba, S., Nieda, M., Azuma, T., Ishihara, S., Shibata, Y., Juji, T. and Hirai, H., Cutting edge: Analysis of human V alpha 24(+)CD8(+) NK T cells activated by alpha-galactosylceramide-pulsed monocyte-derived dendritic cells. J. Immunol. 2002. 168: 31403144.
  • 32
    Chen, H., Huang, H. and Paul, W. E., NK1.1+ CD4+ T cells lose NK1.1 expression upon in vitro activation. J. Immunol. 1997. 158: 51125119.
  • 33
    Bollyky, P. L. and Wilson, S. B., CD1d-restricted T cell subsets and dendritic cell function in autoimmunity. Immunol. Cell Biol. 2004. 82: 307314.
    Direct Link:
  • 34
    Godfrey, D. I., Pellicci, D. G. and Smyth, M. J., Immunology. The elusive NKT cell antigen–is the search over? Science 2004. 306: 16871689.
  • 35
    Zhou, D., Mattner, J., Cantu Iii, C., Schrantz, N., Yin, N., Gao, Y., Sagiv, Y., Hudspeth, K., Wu, Y., Yamashita, T. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 2004
  • 36
    Matsuda, J. L., Naidenko, O. V., Gapin, L., Nakayama, T., Taniguchi, M., Wang, C. R., Koezuka, Y. and Kronenberg, M., Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 2000. 192: 741754.