• 1
    Trapani, J. A. and Smyth, M. J., Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol. 2002. 2: 735747.
  • 2
    Barry, M., Bleackley, R. C., Cytotoxic lymphocytes: all roads lead to death. Nat. Rev. Immunol. 2002. 2: 401409.
  • 3
    Lieberman, J., The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal. Nat. Rev. Immunol. 2003. 3: 361370.
  • 4
    Motyka, B., Korbutt, G., Pinkoski, M. J., Heibein, J. A., Caputo, A., Hobman, M., Barry, M. et al., Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 2000. 103: 491500.
  • 5
    Trapani, J. A., Sutton, V. R., Thia, K. Y., Li, Y. Q., Froelich, C. J., Jans, D. A., Sandrin, M. S. and Browne, K. A., A clathrin/dynamin- and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death. J. Cell Biol. 2003. 160: 223233.
  • 6
    Veugelers, K., Motyka, B., Frantz, C., Shostak, I., Sawchuk, T. and Bleackley, R. C., The granzyme B-serglycin complex from cytotoxic granules requires dynamin for endocytosis. Blood 2004. 103: 38453853.
  • 7
    Froelich, C. J., Orth, K., Turbov, J., Seth, P., Gottlieb, R., Babior, B., Shah, G. M. et al., New paradigm for lymphocyte granule-mediated cytotoxicity. Target cells bind and internalize granzyme B, but an endosomolytic agent is necessary for cytosolic delivery and subsequent apoptosis. J. Biol. Chem. 1996. 271: 2907329079.
  • 8
    Browne, K. A., Blink, E., Sutton, V. R., Froelich, C. J., Jans, D. A. and Trapani, J. A., Cytosolic delivery of granzyme B by bacterial toxins: evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin . Mol. Cell. Biol. 1999. 19: 86048615.
  • 9
    Trapani, J. A., Granzymes: a family of lymphocyte granule serine proteases. Genome Biol. 2001. 2: 3014.13014.7.
  • 10
    Wilharm, E., Parry, M. A., Friebel, R., Tschesche, H., Matschiner, G., Sommerhoff, C. P. and Jenne, D. E., Generation of catalytically active granzyme K from Escherichia coli inclusion bodies and identification of efficient granzyme K inhibitors in human plasma. J. Biol. Chem. 1999. 274: 2733127337.
  • 11
    Waugh, S. M., Harris, J. L., Fletterick, R. and Craik, C. S., The structure of the pro-apoptotic protease granyzme B reveals the molecular determinants of its specificity. Nat. Struct. Biol. 2000. 7: 762765.
  • 12
    Estebanez-Perpina, E., Fuentes-Prior, P., Belorgey, D., Braun, M., Kiefersauer, R., Maskos, K., Huber, R. et al., Crystal structure of the caspase activator human granzyme B, a proteinase highly specific for an Asp-P1 residue. Biol. Chem. 2000. 381: 12031214.
  • 13
    Bell, J. K., Goetz, D. H., Mahrus, S., Harris, J. L., Fletterick, R. J. and Craik, C. S. The oligomeric structure of human granyzme A is a determinant of its extended substrate specificity. Nat. Struct. Biol. 2003. 10: 527534.
  • 14
    Hink-Schauer, C., Estebanez-Perpina, E., Kurschus, F. C., Bode, W. and Jenne, D. E., Crystal structure of the apoptosis-inducing human granzyme A dimer. Nat. Struct. Biol. 2003. 10: 535540.
  • 15
    Lord, S. J., Rajotte, R. V., Korbutt, G. S. and Bleackley, R. C., Granzyme B: a natural born killer. Immunol. Rev. 2003. 193: 3138.
  • 16
    Lieberman, J. and Fan, Z., Nuclear war: the granzyme A-bomb. Curr. Opin. Immunol. 2003. 15: 553559.
  • 17
    Hameed, A., Lowrey, D. M., Lichtenheld, M. G. and Podack, E. R., Characterization of three serine esterases isolated from human interleukin 2 activated killer cells. J. Immunol. 1988. 141: 31423147.
  • 18
    Shi, L., Kam, C. M., Powers, J. C., Aebersold, R. and Greenberg, A. H., Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J. Exp. Med. 1992. 176: 15211529.
  • 19
    MacDonald, G., Shi, L., Vande Velde, C., Lieberman, J. and Greenberg, A. H., Mitochondria-dependent and –independent regulation of granyzme B-induced apoptosis. J. Exp. Med. 1999. 189: 131143.
  • 20
    Hink-Schauer, C., Estebanez-Perpina, E., Wilharm, E., Fuentes-Prior, P., Klinkert, W., Bode, W. and Jenne, D. E., The 2.2-A crystal structure of human pro-granyzme K reveals a rigid zymogen with unusual features. J. Biol. Chem. 2002. 277: 5092350933.
  • 21
    Przetak, M. M., Yoast, S. and Schmidt, B. F., Cloning of cDNA for human granzyme 3. FEBS Lett. 1995. 364: 268271.
  • 22
    Grossman, W. J., Verbsky, J. W., Tollefsen, B. L., Kemper, C., Atkinson, J. P. and Ley, T. J., Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 2004. 104: 28402848.
  • 23
    Hamann, D., Baars, P. A., Rep, M. H., Hooibrink, B., Kerkhof-Garde, S. R., Klein, M. R. and van Lier, R. A., Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 1997. 186: 14071418.
  • 24
    Tomiyama, H., Matsuda, T. and Takiguchi, M., Differentiation of human CD8+ T cells from a memory to memory/effector phenotype. J. Immunol. 2002. 168: 55385550.
  • 25
    Sallusto, F., Lenig, D., Forster, R., Lipp, M. and Lanzavecchia, A., Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999. 401: 708712.
  • 26
    Campbell, J. J., Murphy, K. E., Kunkel, E. J., Brightling, C. E., Soler, D., Shen, Z., Boisvert, J. et al., CCR7 expression and memory T cell diversity in humans. J. Immunol. 2001. 166: 877884.
  • 27
    Fukada, K., Sobao, Y., Tomiyama, H., Oka, S. and Takiguchi, M., Functional expression of the chemokine receptor CCR5 on virus epitope-specific memory and effector CD8+ T cells. J. Immunol. 2002. 168: 22252232.
  • 28
    Tomiyama, H., Takata, H., Matsuda, T. and Takiguchi, M., Phenotypic classification of human CD8+ T cells reflecting their function: inverse correlation between quantitative expression of CD27 and cytotoxic effector function. Eur. J. Immunol. 2004. 34: 9991010.
  • 29
    Smith, S. H., Brown, M. H., Rowe, D., Callard, R. E. and Beverley, P. C., Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL1. Immunology 1986. 58: 6370.
  • 30
    Sanders, M. E., Makgoba, M. W., Sharrow, S. O., Stephany, D., Springer, T. A., Young, H. A. and Shaw, S., Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-γ production. J. Immunol. 1988. 140: 14011407.
  • 31
    Faint, J. M., Annels, N. E., Curnow, S. J., Shields, P., Pilling, D., Hislop, A. D., Wu, L. et al., Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics. J. Immunol. 2001. 167: 212220.
  • 32
    Jacobs, R., Hintzen, G., Kemper, A., Beul, K., Kempf, S., Behrens, G., Sykora, K. W. and Schmidt, R. E., CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur. J. Immunol. 2001. 31: 31213126.
  • 33
    Gunn, M. D., Tangemann, K., Tam, C., Cyster, J. G., Rosen, S. D. and Williams, L. T., A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc. Natl. Acad. Sci. USA 1998. 95: 258263.
  • 34
    Campbell, J. J., Hedrick, J., Zlotnik, A., Siani, M. A., Thompson, D. A. and Butcher, E. C., Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 1998. 279: 381384.
  • 35
    Campbell, J. J., Bowman, E. P., Murphy, K., Youngman, K. R., Siani, M. A., Thompson, D. A., Wu, L., et al., 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3β receptor CCR7. J. Cell. Biol. 1998. 141: 10531059.
  • 36
    Luttmann, W., Herzog, V., Virchow, J. C., Jr, Matthys, H., Thierauch, K. H. and Kroegel, C., Prostacyclin modulates granulocyte/macrophage colony-stimulating factor release by human blood mononuclear cells. Pulm. Pharmacol. 1996. 9: 4348.