SEARCH

SEARCH BY CITATION

  • 1
    Kotake, S., Udagawa, N., Takahashi, N., Matsuzaki, K., Itoh, K., Ishiyama, S., Saito, S. et al., IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J. Clin. Invest. 1999. 103: 13451352.
  • 2
    Kotake, S., Udagawa, N., Hakoda, M., Mogi, M., Yano, K., Tsuda, E., Takahashi, K. et al., Activated human T cells directly induce osteoclastogenesis from human monocytes: possible role of T cells in bone destruction in rheumatoid arthritis patients. Arthritis Rheum. 2001. 44: 10031012.
  • 3
    Kong, Y. Y., Feige, U., Sarosi, I., Bolon, B., Tafuri, A., Morony, S., Capparelli, C. et al., Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999. 402: 304309.
  • 4
    Horwood, N. J., Kartsogiannis, V., Quinn, J. M., Romas, E., Martin, T. J. and Gillespie, M. T., Activated T lymphocytes support osteoclast formation in vitro. Biochem. Biophys. Res. Commun. 1999. 265: 144150.
  • 5
    Fox, S. W., Fuller, K., Bayley, K. E., Lean, J. M., and Chambers, T. J., TGF-beta 1 and IFN-gamma direct macrophage activation by TNF-alpha to osteoclastic or cytocidal phenotype. J. Immunol. 2000. 165: 49574963.
  • 6
    Udagawa, N., Horwood, N. J., Elliott, J., Mackay, A., Owens, J., Okamura, H., Kurimoto, M. et al., Interleukin-18 (interferon-gamma-inducing factor) is produced by osteoblasts and acts via granulocyte/macrophage colony-stimulating factor and not via interferon-gamma to inhibit osteoclast formation. J. Exp. Med. 1997. 185: 10051012.
  • 7
    Takayanagi, H., Ogasawara, K., Hida, S., Chiba, T., Murata, S., Sato, K., Takaoka, A. et al., T-cell-mediated regulation of osteoclastogenesis by signalling cross-talk between RANKL and IFN-gamma. Nature 2000. 408: 600605.
  • 8
    Kotake, S., Sato, K., Kim, K. J., Takahashi, N., Udagawa, N., Nakamura, I., Yamaguchi, A. et al., Interleukin-6 and soluble interleukin-6 receptors in the synovial fluids from rheumatoid arthritis patients are responsible for osteoclast-like cell formation. J. Bone Miner. Res. 1996. 11: 8895.
  • 9
    Kotake, S., Schumacher, H. R. Jr, Yarboro, C. H., Arayssi, T. K., Pando, J. A., Kanik, K. S. et al., In vivo gene expression of type 1 and type 2 cytokines in synovial tissues from patients in early stages of rheumatoid, reactive, and undifferentiated arthritis. Proc. Assoc. An . Physicians. 1997. 109: 286301.
  • 10
    Kobayashi, K., Takahashi, N., Jimi, E., Udagawa, N., Takami, M., Kotake, S., Nakagawa, N. et al., Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J. Exp. Med. 2000. 191: 275286.
  • 11
    Firestein, G. S. and Zvaifler, N. J., How important are T cells in chronic rheumatoid synovitis. Arthritis Rheum. 1990. 33: 768773.
  • 12
    Fox, D. A., The role of T cells in the immunopathogenesis of rheumatoid arthritis. New perspectives. Arthritis Rheum. 1997. 40: 598609.
  • 13
    Dudler, J. and So, A. K., T cells and related cytokines. Curr. Opin. Rheumatol. 1998. 10: 207211.
  • 14
    McInnes, I. B. and Liew, F. Y., Interleukin 15: a proinflammatory role in rheumatoid arthritis synovitis. Immunol. Today 1998. 19: 7579.
  • 15
    Yocum, D. E., T cells: Pathogenic cells and therapeutic targets in rheumatoid arthritis. Semin. Arthritis Rheum. 1999. 29: 2735.
  • 16
    Schulze-Koops, H., Davis, L. S., Haverty, T. P., Wacholtz, M. C. and Lipsky, P. E., Reduction of Th1 cell activity in the peripheral circulation of patients with rheumatoid arthritis after treatment with a non-depleting humanized monoclonal antibody to CD4. J. Rheumatol. 1998. 25: 20652076.
  • 17
    Gerli, R., Bistoni, O., Russano, A., Fiorucci, S., Borgato, L., Cesarotti, M. E. and Lunardi, C., In vivo activated T cells in rheumatoid synovitis. Analysis of Th1- and Th2-type cytokine production at clonal level in different stages of disease. Clin. Exp. Immunol. 2002. 129: 549555.
  • 18
    Veys, E. M., Menkes, C. J. and Emery, P., A randomized, double-blind study comparing twenty-four-week treatment with recombinant interferon-gamma versus placebo in the treatment of rheumatoid arthritis. Arthritis Rheum. 1997. 40: 6268.
  • 19
    Cannon, G. W., Pincus, S. H., Emkey, R. D., Denes, A., Cohen, S. A., Wolfe, F., Saway, PA. et al., Double-blind trial of recombinant gamma-interferon versus placebo in the treatment of rheumatoid arthritis. Arthritis Rheum. 1989. 32: 9649673.
  • 20
    Machold, K. P., Neumann, K. and Smolen, J. S., Recombinant human interferon gamma in the treatment of rheumatoid arthritis: double blind placebo controlled study. Ann. Rheum. Dis. 1992. 51: 10391043.
  • 21
    Veys, E. M., Mielants, H., Verbruggen, G., Grosclaude, J. P., Meyer, W., Galazka, A. and Schindler, J., Interferon gamma in rheumatoid arthritis–a double blind study comparing human recombinant interferon gamma with placebo. J. Rheumatol. 1988. 15: 570574.
  • 22
    Boissier, M. C., Chiocchia, G., Bessis, N., Hajnal, J., Garotta, G. Nicoletti, F. and Fournier, C., Biphasic effect of interferon-gamma in murine collagen-induced arthritis. Eur. J. Immunol. 1995. 25: 11841190.
  • 23
    Ortmann, R. A. and Shevach, E. M., Susceptibility to collagen-induced arthritis: cytokine-mediated regulation. Clin. Immunol. 2001. 98: 109118.
  • 24
    Key, L. L. Jr, Rodriguiz, R. M., Willi, S. M., Wright, N. M., Hatcher, H. C., Eyre, D. R., Cure, J. K. et al., Long-term treatment of osteopetrosis with recombinant human interferon gamma. N. Engl. J. Med. 1995. 332: 15941599.
  • 25
    Key, L. L. Jr, Ries, W. L., Rodriguiz, R. M. and Hatcher, H. C., Recombinant human interferon gamma therapy for osteopetrosis. J. Pediatr. 1992. 121: 119124.
  • 26
    Rodriguiz, R. M., Key, L. L. Jr and Ries, W. L., Combination macrophage-colony stimulating factor and interferon-gamma administration ameliorates the osteopetrotic condition in microphthalmic (mi/mi) mice. Pediatr. Res. 1993. 33: 384389.
  • 27
    Chen, N. J., Huang, M. W. and Hsieh, S. L., Enhanced secretion of IFN-gamma by activated Th1 cells occurs via reverse signaling through TNF-related activation-induced cytokine. J. Immunol. 2001. 166: 270276.
  • 28
    Ronaghy, A., Prakken, B. J., Takabayashi, K., Firestein, G. S., Boyle, D., Zvailfler, N. J., Roord, S. T. et al., Immunostimulatory DNA sequences influence the course of adjuvant arthritis. J. Immunol. 2002. 168: 5156.
  • 29
    Lam, J., Takeshita, S., Barker, J. E., Kanagawa, O., Ross, F. P. and Teitelbaum, S. L., TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 2000. 106: 14811488.
  • 30
    Zhang, Y. H., Heulsmann, A., Tondravi, MM., Mukherjee, A., and Abu-Amer, Y., Tumor necrosis factor-alpha (TNF) stimulates RANKL-induced osteoclastogenesis via coupling of TNF type 1 receptor and RANK signaling pathways. J. Biol. Chem. 2001. 276: 563568.
  • 31
    Constantin, A., Loubet-Lescoulie, P., Lambert, N., Yassine-Diab, B., Abbal, M., Mazieres, B., de Preval, C. et al., Antiinflammatory and immunoregulatory action of methotrexate in the treatment of rheumatoid arthritis: evidence of increased interleukin-4 and interleukin-10 gene expression demonstrated in vitro by competitive reverse transcriptase-polymerase chain reaction. Arthritis Rheum. 1998. 41: 4857.
  • 32
    Ogawa, Y., Ohtsuki, M., Uzuki, M., Sawai, T., Onozawa, Y., Nakayama, J., Yonemura, A. et al., Suppression of osteoclastogenesis in rheumatoid arthritis by induction of apoptosis in activated CD4+ T cells. Arthritis Rheum. 2003. 48: 33503358.
  • 33
    Valverde, P., Kawai, T. and Taubman, M. A., Selective blockade of voltage-gated potassium channels reduces inflammatory bone resorption in experimental periodontal disease. J. Bone Miner. Res. 2004. 19: 155164.
    Direct Link:
  • 34
    Di Monaco, M., Vallero, F., Di Monaco, R., Mautino, F. and Cavanna, A., Total lymphocyte count and femoral bone mineral density in postmenopausal women. J. Bone Miner. Metab. 2004. 22: 5863.
  • 35
    Huang, W., O'Keefe, R. J. and Schwarz, E. M., Exposure to receptor-activator of NFkappaB ligand renders pre-osteoclasts resistant to IFN-gamma by inducing terminal differentiation. Arthritis Res. Ther. 2003. 5: 4959.
  • 36
    Wyzga, N., Varghese, S., Wikel, S., Canalis, E. and Sylvester, F. A., Effects of activated T cells on osteoclastogenesis depend on how they are activated. Bone 2004. 35: 614620.
  • 37
    Kanamaru, F., Iwai, H., Ikeda, T., Nakajima, A., Ishikawa, I. and Azuma, M., Expression of membrane-bound and soluble receptor activator of NF-kappaB ligand (RANKL) in human T cells. Immunol. Lett. 2004. 94: 239246.
  • 38
    Josien, R., Li, H. L., Ingulli, E., Sarma, S., Wong, B. R., Vologodskaia, M., Steinman, R. M. and Choi, Y., TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J. Exp. Med. 2000. 191: 495502.
  • 39
    Kotake, S., Schumacher, H. R. Jr and Wilder, R. L., A simple nested RT-PCR method for quantitation of the relative amounts of multiple cytokine mRNAs in small tissue samples. J. Immunol. Methods 1996. 199: 193203.
  • 40
    Kinpara, K., Mogi, M., Kuzushima, M. and Togari, A., Osteoclast differentiation factor in human osteosarcoma cell line. J. Immunoassay 2000. 21: 327340.