• 1
    Daniels, G. A., Sanchez-Perez, L., Diaz, R. M., Kottke, T., Thompson, J., Lai, M., Gough, M. et al., A simple method to cure established tumors by inflammatory killing of normal cells. Nat. Biotechnol. 2004. 22: 11251132.
  • 2
    Belli, F., Testori, A., Rivoltini, L., Maio, M., Andreola, G., Sertoli, M. R., Gallino, G. et al., Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J. Clin. Oncol. 2002. 20: 41694180.
  • 3
    Huang, X. F., Ren, W., Rollins, L., Pittman, P., Shah, M., Shen, L., Gu, Q. et al., A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res. 2003. 63: 73217329.
  • 4
    Calderwood, S. K., Chaperones And Slow Death: a recipe for tumor immunotherapy. Trends Biotechnol. 2005, in press.
  • 5
    Melcher, A., Todryk, S., Hardwick, N., Ford, M., Jacobson, M. and Vile, R. G., Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nat. Med. 1998. 4: 581587.
  • 6
    Srivastava, P., Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 2002. 20: 395425.
  • 7
    Srivastava, P. K. and Amato, R. J., Heat shock proteins: the ‘Swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine 2001. 19: 25902597.
  • 8
    Manjili, M. H., Henderson, R., Wang, X. Y., Chen, X., Li, Y., Repasky, E., Kazim, L. and Subjeck, J. R., Development of a recombinant HSP110-HER-2/neu vaccine using the chaperoning properties of HSP110. Cancer Res. 2002. 62: 17371742.
  • 9
    Lindquist, S. and Craig, E. A., The heat shock proteins. Annu. Rev. Genet. 1988. 22: 631637.
  • 10
    Georgopolis, C. and Welch, W. J., Role of the major heat shock proteins as molecular chaperones. Annu. Rev. Cell Biol. 1993. 9: 601634.
  • 11
    Bukau, B. and Horwich, A. L., The Hsp70 and Hsp60 chaperone machines. Cell 1998. 92: 351366.
  • 12
    Noessner, E., Gastpar, R., Milani, V., Brandl, A., Hutzler, P. J., Kuppner, M. C., Roos, M. et al., Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol. 2002. 169: 54245432.
  • 13
    Tang, D., Khaleque, A. A., Jones, E. R., Theriault, J. R., Li, C., Wong, W. H., Stevenson, M. A. and Calderwood, S. K., Expression of heat shock proteins and HSP messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 2005. 10: 4659.
  • 14
    Schlessinger, M. J., How the cell copes with stress and the function of heat shock proteins. Pediatr. Res. 1994. 36: 16.
  • 15
    Nylandsted, J., Brand, K. and Jaattela, M., Heat shock protein 70 is required for the survival of cancer cells. Ann. N. Y. Acad. Sci. 2000. 926: 122125.
  • 16
    Cornford, P. A., Dodson, A. R., Parsons, K. F., Desmond, A. D., Woolfenden, A., Fordham, M., Neoptolemos, J. P. et al., Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res. 2000. 60: 70997105.
  • 17
    Clark, P. R. and Menoret, A., The inducible Hsp70 as a marker of tumor immunogenicity. Cell Stress Chaperones 2001. 6: 121125.
  • 18
    Nadler, S. G., Tepper, M. A., Schacter, B. and Mazzucco, C. E., Interaction of the immunosuppressant deoxyspergualin with a member of the Hsp70 family of heat shock proteins. Science 1992. 258: 484486.
  • 19
    Goldberg, A. L., Cascio, P., Saric, T. and Rock, K. L., The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol. Immunol. 2002. 39: 147164.
  • 20
    Rock, K. L., York, I. A., Saric, T. and Goldberg, A. L., Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol. 2002. 80: 170.
  • 21
    Gromme, M. and Neefjes, J., Antigen degradation or presentation by MHC class I molecules via classical and non-classical pathways. Mol. Immunol. 2002. 39: 181202.
  • 22
    Shepherd, J. C., Schumacher, T. N., Ashton-Rickardt, P. G., Imaeda, S., Ploegh, H. L., Janeway, C. A., Jr. and Tonegawa, S., TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell 1993. 74: 577584.
  • 23
    Schumacher, T. N., Kantesaria, D. V., Heemels, M. T., Ashton-Rickardt, P. G., Shepherd, J. C., Fruh, K., Yang, Y. et al., Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J. Exp. Med. 1994. 179: 533540.
  • 24
    Neefjes, J. J., Momburg, F. and Hammerling, G. J., Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 1993. 261: 769771.
  • 25
    Monaco, J. J., A molecular model of MHC class-I-restricted antigen processing. Immunol. Today 1992. 13: 173179.
  • 26
    Germain, R. N., MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 1994. 76: 287299.
  • 27
    Topalian, S. L., Rivoltini, L., Mancini, M., Markus, N. R., Robbins, P. F., Kawakami, Y. and Rosenberg, S. A., Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc. Natl. Acad. Sci. USA 1994. 91: 94619465.
  • 28
    Wilbanks, S. M., Chen, L., Tsuruta, H., Hodgson, K. O. and McKay, D. B., Solution small-angle X-ray scattering study of the molecular chaperone HSC70 and its subfragments. Biochemistry 1995. 34: 1209512106.
  • 29
    Flaherty, K. M., DeLuca-Flaherty, C. and McKay, D. B., Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 1990. 346: 623628.
  • 30
    Flynn, G. C., Chappell, T. G. and Rothman, J. E., Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 1989. 245: 385390.
  • 31
    Srivastava, P. K., Heat shock protein-based novel immunotherapies. Drug News Perspect. 2000. 13: 517522.
  • 32
    Falk, K., Rotzschke, O. and Rammensee, H. G., Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 1990. 348: 248251.
  • 33
    Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. and Rammensee, H. G., Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991. 351: 290296.
  • 34
    Wu, S. J. and Wang, C., Binding of heptapeptides or unfolded proteins to the chimeric C-terminal domains of 70 kDa heaty shock cognate protein. Eur. J. Biochem. 1999. 259: 449455.
  • 35
    Fourie, A. M., Sambrook, J. F. and Gething, M. J., Common and divergent peptide binding specificities of hsp70 molecular chaperones. J. Biol. Chem. 1994. 269: 3047030478.
  • 36
    Gragerov, A. and Gottesman, M. E., Different peptide binding specificities of hsp70 family members. J. Mol. Biol. 1994. 241: 133135.
  • 37
    James, P., Pfund, C. and Craig, E. A., Functional specificity among Hsp70 molecular chaperones. Science 1997. 275: 387389.
  • 38
    Misselwitz, B., Staeck, O. and Rapoport, T. A., J proteins catalytically activate Hsp70 molecules to trap a wide range of peptide sequences. Mol. Cell 1998. 2: 593603.
  • 39
    Laufen, T., Mayer, M. P., Beisel, C., Klostermeier, D., Mogk, A., Reinstein, J. and Bukau, B., Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. USA 1999. 96: 54525457.
  • 40
    Davis, J. E., Voisine, C. and Craig, E. A., Intragenic suppressors of Hsp70 mutants: interplay between the ATPase- and peptide-binding domains. Proc. Natl. Acad. Sci. USA 1999. 96: 92699276.
  • 41
    Terada, K. and Mori, M., Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of HSC70. J. Biol. Chem. 2000. 275: 2472824734.
  • 42
    Grossmann, M. E., Madden, B. J., Gao, F., Pang, Y. P., Carpenter, J. E., McCormick, D. and Young, C. Y., Proteomics shows Hsp70 does not bind peptide sequences indiscriminately in vivo. Exp. Cell Res. 2004. 297: 108117.
  • 43
    Murata, S., Minami, Y., Minami, M., Chiba, T. and Tanaka, K., CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2001. 2: 11331138.
  • 44
    Connell, P., Ballinger, C. A., Jiang, J., Wu, Y., Thompson, L. J., Hohfeld, J. and Patterson, C., The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 2001. 3: 9396.
  • 45
    Ballinger, C. A., Connell, P., Wu, Y., Hu, Z., Thompson, L. J., Yin, L. Y. and Patterson, C., Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 1999. 19: 45354545.
  • 46
    Panjwani, N., Akbari, O., Garcia, S., Brazil, M. and Stockinger, B., The HSC73 molecular chaperone: involvement in MHC class II antigen presentation. J. Immunol. 1999. 163: 19361942.
  • 47
    Agarraberes, F. A., Terlecky, S. R. and Dice, J. F., An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J. Cell Biol. 1997. 137: 825834.
  • 48
    Cuervo, A. M. and Dice, J. F., Lysosomes, a meeting point of proteins, chaperones, and proteases. J. Mol. Med. 1998. 76: 612.
  • 49
    Chiang, H. L., Terlecky, S. R., Plant, C. P. and Dice, J. F., A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 1989. 246: 382385.
  • 50
    Brodsky, J. L., Selectivity of the molecular chaperone-specific immunosuppressive agent 15-deoxyspergualin: modulation of HSC70 ATPase activity without compromising DnaJ chaperone interactions. Biochem. Pharmacol. 1999. 57: 877880.
  • 51
    Pockley, A. G., Shepherd, J. and Corton, J. M., Detection of heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal individuals. Immunol. Invest. 1998. 27: 367377.
  • 52
    Wright, B. H., Corton, J. M., El-Nahas, A. M., Wood, R. F. and Pockley, A. G., Elevated levels of circulating heat shock protein 70 (Hsp70) in peripheral and renal vascular disease. Heart Vessels 2000. 15: 1822.
  • 53
    Pockley, A. G., Heat shock proteins as regulators of the immune response. Lancet 2003. 362: 469476.
  • 54
    Campisi, J. and Fleshner, M., Role of extracellular HSP72 in acute stress-induced potentiation of innate immunity in active rats. J. Appl. Physiol. 2003. 94: 4352.
  • 55
    Todryk, S., Melcher, A. A., Hardwick, N., Linardakis, E., Bateman, A., Colombo, M. P., Stoppacciaro, A. and Vile, R. G., Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J. Immunol. 1999. 163: 13981408.
  • 56
    Srivastava, P., Hypothesis: controlled necrosis as a tool for immunotherapy of human cancer. Cancer Immun. 2003. 3: 4.
  • 57
    Becker, T., Hartl, F. U. and Wieland, F., CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J. Cell Biol. 2002. 158: 12771285.
  • 58
    Wang, M. H., Grossmann, M. E. and Young, C. Y., Forced expression of heat-shock protein 70 increases the secretion of Hsp70 and provides protection against tumour growth. Br. J. Cancer 2004. 90: 926931.
  • 59
    Asea, A. and Calderwood, S. K., Regulation of signal transduction by intracellular and extracellular hsp70. Cambridge University Press, Cambridge 2005
  • 60
    Gallucci, S., Lolkema, M. and Matzinger, P., Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 1999. 5: 12491255.
  • 61
    Engelhard, V. H., Bullock, T. N., Colella, T. A., Sheasley, S. L. and Mullins, D. W., Antigens derived from melanocyte differentiation proteins: self-tolerance, autoimmunity, and use for cancer immunotherapy. Immunol. Rev. 2002. 188: 136146.
  • 62
    Castelli, C., Rivoltini, L., Rini, F., Belli, F., Testori, A., Maio, M., Mazzaferro, V. et al., Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol. Immunother. 2004. 53: 227233.
  • 63
    Isenman, L. D. and Dice, J. F., Secretion of intact proteins and peptide fragments by lysosomal pathways of protein degradation. J. Biol. Chem. 1989. 264: 2159121596.
  • 64
    Terlecky, S. R., Olson, T. S. and Dice, J. F., A pathway of lysosomal proteolysis mediated by the 73-kilodalton heat shock cognate protein. Acta Biol. Hung. 1991. 42: 3947.
  • 65
    Mathew, A., Bell, A. and Johnstone, R. M., Hsp-70 is closely associated with the transferrin receptor in exosomes from maturing reticulocytes. Biochem. J. 1995. 308 (Pt 3): 823830.
  • 66
    Broquet, A. H., Thomas, G., Masliah, J., Trugnan, G. and Bachelet, M., Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J. Biol. Chem. 2003. 278: 2160121606.
  • 67
    Multhoff, G. and Hightower, L. E., Cell surface expression of heat shock proteins and the immune response. Cell Stress Chaperones 1996. 1: 167176.
  • 68
    Multhoff, G., Activation of natural killer cells by heat shock protein 70. Int. J. Hyperthermia 2002. 18: 576585.
  • 69
    Gross, C., Koelch, W., DeMaio, A., Arispe, N. and Multhoff, G., Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J. Biol. Chem. 2003
  • 70
    Kishi, A., Ichinohe, T., Hirai, I., Kamiguchi, K., Tamura, Y., Kinebuchi, M., Torigoe, T. et al., The cell surface-expressed HSC70-like molecule preferentially reacts with the rat T-cell receptor Vdelta6 family. Immunogenetics 2001. 53: 401409.
  • 71
    Shin, B. K., Wang, H., Yim, A. M., Le Naour, F., Brichory, F., Jang, J. H., Zhao, R. et al., Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem. 2003. 278: 76077616.
  • 72
    Millar, D. G., Garza, K. M., Odermatt, B., Elford, A. R., Ono, N., Li, Z. and Ohashi, P. S., Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo. Nat. Med. 2003. 9: 14691476.
  • 73
    Asea, A., Kraeft, S. K., Kurt-Jones, E. A., Stevenson, M. A., Chen, L. B., Finberg, R. W., Koo, G. C. and Calderwood, S. K., HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med. 2000. 6: 435442.
  • 74
    Singh-Jasuja, H., Scherer, H. U., Hilf, N., Arnold-Schild, D., Rammensee, H. G., Toes, R. E. and Schild, H., The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur. J. Immunol. 2000. 30: 22112215.
  • 75
    Singh-Jasuja, H., Toes, R. E., Spee, P., Munz, C., Hilf, N., Schoenberger, S. P., Ricciardi-Castagnoli, P. et al., Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med. 2000. 191: 19651974.
  • 76
    Delneste, Y., Magistrelli, G., Gauchat, J., Haeuw, J., Aubry, J., Nakamura, K., Kawakami-Honda, N. et al., Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 2002. 17: 353362.
  • 77
    Akira, S. and Sato, S., Toll-like receptors and their signaling mechanisms. Scand. J. Infect. Dis. 2003. 35: 555562.
  • 78
    Asea, A., Rehli, M., Kabingu, E., Boch, J. A., Bare, O., Auron, P. E., Stevenson, M. A. and Calderwood, S. K., Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 2002. 277: 1502815034.
  • 79
    Basu, S., Binder, R. J., Ramalingam, T. and Srivastava, P. K., CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 2001. 14: 303313.
  • 80
    Wang, Y., Kelly, C. G., Karttunen, J. T., Whittall, T., Lehner, P. J., Duncan, L., MacAry, P. et al., CD40 is a cellular receptor mediating mycobacterial heat shock protein 70 stimulation of CC-chemokines. Immunity 2001. 15: 971983.
  • 81
    Theriault, J. R., Mambula, S. S., Sawamura, T., Stevenson, M. A. and Calderwood, S. K., Extracellular HSP70 binding to surface receptors present on antigen presenting cells and endothelial/epithelial cells. FEBS lett. 2005. 579: 19511960.
  • 82
    Tamura, Y., Tsuboi, N., Sato, N. and Kikuchi, Y., 70 kDa heat shock cognate protein is a transformation associated antigen and a possible target for the host's immunity. J. Immunol. 1993. 151: 55165524.
  • 83
    Marshall, A. S. and Gordon, S., Commentary: C-type lectins on the macrophage cell surface – recent findings. Eur. J. Immunol. 2004. 34: 1824.
  • 84
    Nollen, E. A. and Morimoto, R. I., Chaperoning signaling pathways: molecular chaperones as stress-sensing ‘heat shock’ proteins. J. Cell Sci. 2002. 115: 28092816.
  • 85
    Ohashi, P. S. and DeFranco, A. L., Making and breaking tolerance. Curr. Opin. Immunol. 2002. 14: 744759.
  • 86
    Pulendran, B., Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 2004. 199: 227250.
  • 87
    Vabulas, R. M., Ahmad-Nejad, P., Ghose, S., Kirschning, C. J., Issels, R. D. and Wagner, H., HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway. J. Biol. Chem. 2002. 277: 1510715112.
  • 88
    Asea, A., Kabingu, E., Stevenson, M. A. and Calderwood, S. K., HSP70 peptide-bearingpreparations act as chaperokines. Cell Stress Chaperones 2000. 5: 425431.
  • 89
    Gao, B. and Tsan, M. F., Endotoxin contamination in recombinant human heat shock protein 70 (Hsp70) preparation is responsible for the induction of tumor necrosis factor alpha release by murine macrophages. J. Biol. Chem. 2003. 278: 174179.
  • 90
    Ouaaz, F., Arron, J., Zheng, Y., Choi, Y. and Beg, A. A., Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 2002. 16: 257270.
  • 91
    Cominacini, L., Pasini, A. F., Garbin, U., Davoli, A., Tosetti, M. L., Campagnola, M., Rigoni, A. et al., Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J. Biol. Chem. 2000. 275: 1263312638.
  • 92
    Li, D., Liu, L., Chen, H., Sawamura, T. and Mehta, J. L., LOX-1, an oxidized LDL endothelial receptor, induces CD40/CD40L signaling in human coronary artery endothelial cells. Arterioscler. Thromb. Vasc. Biol. 2003. 23: 816821.
  • 93
    Arnold-Schild, D., Hanau, D., Spehner, D., Schmid, C., Rammensee, H. G., de la Salle, H. and Schild, H., Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol. 1999. 162: 37573760.
  • 94
    Bonifacino, J. S. and Traub, L. M., Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 2003. 72: 395447.
  • 95
    Bonifacino, J. S. and Dell'Angelica, E. C., Molecular bases for the recognition of tyrosine-based sorting signals. J. Cell. Biol. 1999. 145: 923926.
  • 96
    Krieger, M. and Stern, D. M., Series introduction: multiligand receptors and human disease. J. Clin. Invest. 2001. 108: 645647.
  • 97
    Herz, J. and Strickland, D. K., LRP: a multifunctional scavenger and signaling receptor. J. Clin. Invest. 2001. 108: 779784.
  • 98
    Li, Y., Marzolo, M. P., van Kerkhof, P., Strous, G. J. and Bu, G., The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J. Biol. Chem. 2000. 275: 1718717194.
  • 99
    Chen, M., Masaki, T. and Sawamura, T., LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. Pharmacol. Ther. 2002. 95: 89100.
  • 100
    Herre, J., Marshall, A. S., Caron, E., Edwards, A. D., Williams, D. L., Schweighoffer, E., Tybulewicz, V. et al., Dectin-1 utilizes novel mechanisms for yeast phagocytosis in macrophages. Blood 2004
  • 101
    Milani, V., Noessner, E., Ghose, S., Kuppner, M., Ahrens, B., Scharner, A., Gastpar, R. and Issels, R. D., Heat shock protein 70: role in antigen presentation and immune stimulation. Int. J. Hyperthermia 2002. 18: 563575.
  • 102
    Baker-LePain, J. C., Reed, R. C. and Nicchitta, C. V., ISO: a critical evaluation of the role of peptides in heat shock/chaperone protein-mediated tumor rejection. Curr. Opin. Immunol. 2003. 15: 8994.
  • 103
    Houde, M., Bertholet, S., Gagnon, E., Brunet, S., Goyette, G., Laplante, A., Princiotta, M. F. et al., Phagosomes are competent organelles for antigen cross-presentation. Nature 2003. 425: 402406.
  • 104
    Zheng, H. and Li, Z., Cutting Edge: Cross-presentation of cell-associated antigens to MHC class I molecule is regulated by a major transcription factor for heat shock proteins. J. Immunol. 2004. 173: 59295933.
  • 105
    Berwin, B. and Nicchitta, C. V., To find the road traveled to tumor immunity: the trafficking itineraries of molecular chaperones in antigen-presenting cells. Traffic 2001. 2: 690697.