SEARCH

SEARCH BY CITATION

  • 1
    Steinman, L., Multiple sclerosis: A coordinated immunological attack against myelin in the central nervous system. Cell 1996. 85: 299302.
  • 2
    Kuchroo, V. K., Anderson, A. C., Waldner, H., Munder, M., Bettelli, E. and Nicholson, L. B., T cell response in experimental autoimmune encephalomyelitis (EAE): Role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu. Rev. Immunol. 2002. 20: 101123.
  • 3
    Secor, V. H., Secor, W. E., Gutekunst, C. A. and Brown, M. A., Mast cells are essential for early onset and severe disease in a murine model of multiple sclerosis. J. Exp. Med. 2000. 191: 813822.
  • 4
    Tanzola, M. B., Robbie-Ryan, M., Gutekunst, C. A. and Brown, M. A., Mast cells exert effects outside the central nervous system to influence experimental allergic encephalomyelitis disease course. J. Immunol. 2003. 171: 43854391.
  • 5
    Jawdat, D. M., Albert, E. J., Rowden, G., Haidl, I. D. and Marshall, J. S., IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J. Immunol. 2004. 173: 52755282.
  • 6
    Kashiwakura, J., Yokoi, H., Saito, H. and Okayama, Y., T cell proliferation by direct cross-talk between OX40 ligand on human mast cells and OX40 on human T cells: Comparison of gene expression profiles between human tonsillar and lung-cultured mast cells. J. Immunol. 2004. 173: 52475257.
  • 7
    Nakae, S., Suto, H., Kakurai, M., Sedgwick, J. D., Tsai, M. and Galli, S. J., Mast cells enhance T cell activation: Importance of mast cell-derived TNF. Proc. Natl. Acad. Sci. USA 2005. 102: 64676472.
  • 8
    Brown, M. A., Pierce, J. H., Watson, C. J., Falco, J., Ihle, J. N. and Paul, W. E., B cell stimulatory factor-1/interleukin-4 mRNA is expressed by normal and transformed mast cell lines. Cell 1987. 50: 809818.
  • 9
    Plaut, M., Pierce, J. H., Watson, C. J., Hanley-Hyde, J., Nordon, R. P. and Paul, W. E., Mast cell lines produce lymphokines in response to cross-linkage of FcϵRI or to calcium ionophores. Nature 1989. 339: 6467.
  • 10
    Galli, S. J., Nakae, S. and Tsai, M., Mast cells in the development of adaptive immune responses. Nat. Immunol. 2005. 6: 135142.
  • 11
    Galli, S. J. and Kitamura, Y., Genetically mast-cell-deficient W/Wv and Sl/Sld mice: Their value for the analysis of the roles of mast cells in biologic responses in vivo. Am. J. Pathology 1987. 127: 191198.
  • 12
    Rodewald, H. R., Ogawa, M., Haller, C., Waskow, C. and DiSanto, J. P., Pro-thymocyte expansion by c-kit and the common cytokine receptor gamma chain is essential for repertoire formation. Immunity 1997. 6: 265272.
  • 13
    Waskow, C., Paul, S., Haller, C., Gassmann, M. and Rodewald, H., Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity 2002. 17: 277288.
  • 14
    Tedla, N., Wang, H. W., McNeil, H. P., Di Girolamo, N., Hampartzoumian, T., Wakefield, D. and Lloyd, A., Regulation of T lymphocyte trafficking into lymph nodes during an immune response by the chemokines macrophage inflammatory protein (MIP)-1 alpha and MIP-1 beta. J. Immunol. 1998. 161: 56635672.
  • 15
    McLachlan, J. B., Hart, J. P., Pizzo, S. V., Shelburne, C. P., Staats, H. F., Gunn, M. D. and Abraham, S. N., Mast cell-derived tumor necrosis factor induces hypertrophy of draining lymph nodes during infection. Nat. Immunol. 2003. 4: 11991205.
  • 16
    Brocke, S., Piercy, C., Steinman, L., Weissman, I. L. and Veromaa, T., Antibodies to CD44 and integrin alpha4, but not L-selectin, prevent central nervous system inflammation and experimental encephalomyelitis by blocking secondary leukocyte recruitment. Proc. Natl. Acad. Sci. USA 1999. 96: 68966901.
  • 17
    Iezzi, G., Scheidegger, D. and Lanzavecchia, A., Migration and function of antigen-primed nonpolarized T lymphocytes in vivo. J. Exp. Med. 2001. 193: 987993.
  • 18
    Ford, M. L. and Evavold, B. D., Specificity, magnitude, and kinetics of MOG-specific CD8+ T cell responses during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 2005. 35: 7685.
  • 19
    Kassiotis, G., Pasparakis, M., Kollias, G. and Probert, L., TNF accelerates the onset but does not alter the incidence and severity of myelin basic protein-induced experimental autoimmune encephalomyelitis. Eur. J. Immunol. 1999. 29: 774780.
  • 20
    McQualter, J. L., Darwiche, R., Ewing, C., Onuki, M., Kay, T. W., Hamilton, J. A., Reid, H. H. and Bernard, C. C., Granulocyte macrophage colony-stimulating factor: A new putative therapeutic target in multiple sclerosis. J. Exp. Med. 2001. 194: 873882.
  • 21
    Gran, B., Zhang, G. X. and Rostami, A., Role of the IL-12/IL-23 system in the regulation of T-cell responses in central nervous system inflammatory demyelination. Crit. Rev. Immunol. 2004. 24: 111128.
  • 22
    Yao, Y., Li, W., Kaplan, M. H. and Chang, C. H., Interleukin (IL)-4 inhibits IL-10 to promote IL-12 production by dendritic cells. J. Exp. Med. 2005. 201: 18991903.
  • 23
    Ibrahim, M. Z. M., Reder, A. T., Lawand, R., Takash, W. and Sallouh-Khatib, S., The mast cells of the multiple sclerosis brain. J. Neuroimmunol. 1996. 70: 131138.
  • 24
    Neuman, J., Ueber das Vorkommen der sogenannten “Mastzellen” bei pathologischen Veraenderungen des Gehirns. Virchows Arch. Pathol. Anat. Physiol. 1890. 122: 378381.
  • 25
    Steinman, L., Multiple sclerosis: A two-stage disease. Nat. Immunol. 2001. 2: 762764.
  • 26
    Abbott, N. J., Inflammatory mediators and modulation of blood-brain barrier permeability. Cell. Mol. Neurobiol. 2000. 20: 131147.
  • 27
    Ott, V. L., Cambier, J. C., Kappler, J., Marrack, P. and Swanson, B. J., Mast cell-dependent migration of effector CD8+ T cells through production of leukotriene B4. Nat. Immunol. 2003. 4: 974981.
  • 28
    Fox, C. C., Jewell, S. D. and Whitacre, C. C., Rat peritoneal mast cells present antigen to a PPD-specific T cell line. Cell. Immunol. 1994. 158: 253264.
  • 29
    Frandji, P., Oskeritzian, C., Cacraci, F., Lapeyre, J., Peronet, R., David, B., Guillet, J.-G. and Mecheri, S., Antigen-dependent stimulation by bone marrow-derived mast cells of MHC class II-restricted T cell hybridoma. J. Immunol. 1993. 151: 63186328.
  • 30
    Frandji, P., Tkaczk, C., Oskeritzian, C., Lapeyre, J., Peronet, R., David, B., Guillet, J.-G. and Mecheri, S., Presentation of soluble antigens by mast cells: Upregulation by interleukin-4 and granulocyte/macrophage colony-stimulating factor and downregulation by interferon-γ. Cell. Immunol. 1995. 163: 3746.
  • 31
    Eager, K. B., Hackett, C. J., Gerhard, W. U., Bennink, J., Eisenlohr, L. C., Yewdell, J. and Ricciardi, R. P., Murine cell lines stably expressing the influenza virus hemagglutinin gene introduced by a recombinant retrovirus vector are constitutive targets for MHC class I- and class II-restricted T lymphocytes. J. Immunol. 1989. 143: 23282335.
  • 32
    Supajatura, V., Ushio, H., Nakao, A., Okumura, K., Ra, C. and Ogawa, H., Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J. Immunol. 2001. 167: 22502256.
  • 33
    Jutel, M., Watanabe, T., Klunker, S., Akdis, M., Thomet, O. A., Malolepszy, J., Zak-Nejmark, T. et al., Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 2001. 413: 420425.
  • 34
    Teuscher, C., Poynter, M. E., Offner, H., Zamora, A., Watanabe, T., Fillmore, P. D., Zachary, J. F. and Blankenhorn, E. P., Attenuation of Th1 effector cell responses and susceptibility to experimental allergic encephalomyelitis in histamine H2 receptor knockout mice is due to dysregulation of cytokine production by antigen-presenting cells. Am. J. Pathol. 2004. 164: 883892.
  • 35
    Mazzoni, A., Young, H. A., Spitzer, J. H., Visintin, A. and Segal, D. M., Histamine regulates cytokine production in maturing dendritic cells, resulting in altered T cell polarization. J. Clin. Invest. 2001. 108: 18651873.
  • 36
    Wang, H.-W., Tedia, N., Lloyd, A. R., Wakefield, D. and McNeil, H. P., Mast cell activation and migration to lymph nodes during induction of an immune response in mice. J. Clin. Invest. 1998. 102: 16171626.
  • 37
    Ma, R. Z., Gao, J., Meeker, N. D., Fillmore, P. D., Tung, K. S., Watanabe, T., Zachary, J. F. et al., Identification of Bphs, an autoimmune disease locus, as histamine receptor H1. Science 2002. 297: 620623.
  • 38
    Mecheri, S. and David, B., Unravelling the mast cell dilemma: Culprit or victim of its generosity? Immunol. Today 1997. 18: 212215.
  • 39
    Huseby, E. S., Liggitt, D., Brabb, T., Schnabel, B., Ohlen, C. and Goverman, J., A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J. Exp. Med. 2001. 194: 669676.
  • 40
    Steinman, L., Myelin-specific CD8 T cells in the pathogenesis of experimental allergic encephalitis and multiple sclerosis. J. Exp. Med. 2001. 194: F27–F30.
  • 41
    Sun, D., Whitaker, J. N., Huang, Z., Liu, D., Coleclough, C., Wekerle, H. and Raine, C. S., Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J. Immunol. 2001. 166: 75797587.
  • 42
    Tompkins, S. M., Padilla, J., Dal Canto, M. C., Ting, J. P., Van Kaer, L. and Miller, S. D., De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J. Immunol. 2002. 168: 41734183.