• 1
    Gendler, S. J., Spicer, A. P., Lalani, E. N., Duhig, T., Peat, N., Burchell, J., Pemberton, L. et al., Structure and biology of a carcinoma-associated mucin, MUC1. Am. Rev. Respir. Dis. 1991. 144: S42S47.
  • 2
    Vlad, A. M., Muller, S., Cudic, M., Paulsen, H., Otvos, L., Hanisch, F. G. and Finn, O. J., Complex carbohydrates are not removed during processing of glycoproteins by dendritic cells: Processing of tumor antigen MUC1 glycopeptides for presentation to major histocompatibility complex class II-restricted T cells. J. Exp. Med. 2002. 196: 14351446.
  • 3
    Jerome, K. R., Barnd, D. L., Bendt, K. M., Boyer, C. M., Taylor-Papadimitriou, J., McKenzie, I. F., Bast, R. C. et al., Cytotoxic T lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res. 1991. 51: 29082916.
  • 4
    Apostolopoulos, V., Loveland, B. E., Pietersz, G. A. and McKenzie, I. F. C., CTL in mice immunized with human mucin 1 are MHC-restricted. J. Immunol. 1995. 155: 50895094.
  • 5
    Brossart, P., Dendritic cells in vaccination therapies of malignant diseases. Transfus. Apheresis Sci. 2002. 27: 183186.
  • 6
    Agrawal, B., Krantz, M. J., Reddish, M. A. and Longenecker, B. M., Rapid induction of primary human CD4+ and CD8+ T cell responses against cancer-associated MUC1 peptide epitopes. Int. Immunol. 1998. 10: 19071916.
  • 7
    Scholl, S. M., Balloul, J. M., Le Goc, G., Bizouarne, N., Schatz, C., Kieny, M. P., Mensdorff-Pouilly, S. et al., Recombinant vaccinia virus encoding human MUC1 and IL2 as immunotherapy in patients with breast cancer. J. Immunother. 2000. 23: 570580.
  • 8
    Gilewski, T., Adluri, S., Ragupathi, G., Zhang, S., Yao, T. J., Panageas, K., Moyahan, M. et al., Vaccination of high risk breast cancer patients with MUC-1 keyhole limpet hemocyanin conjugate plus QS-21. Clin. Cancer Res. 2000. 6: 16931701.
  • 9
    Musselli, C., Livingston, P. O. and Ragupathi, G., Keyhole limpet hemocyanin conjugate vaccines against cancer. J. Cancer Res. Clin. Oncol. 2001. 127: R20–R26.
  • 10
    Musselli, C., Ragupathi, G., Gilewski, T., Panageas, K. S., Spinat, Y. and Livingston, P. O., Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1. Int. J. Cancer. 2002. 97: 660667.
  • 11
    Karanikas, V., Thynne, G., Mitchell, P., Ong, C. S., Gunawardana, D., Blum, R. et al., Mannan mucin-1 peptide immunization: Influence of cyclophosphamide and the route of injection. J. Immunother. 2001. 24: 17283.
  • 12
    Pockley, A. G., Heat shock proteins as regulators of the immune response. Lancet 2003. 362: 469476.
  • 13
    Chu, N. R., Wu, H. B., Wu, T., Boux, L. J., Siegel, M. I. and Mizzen, L. A., Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-Guérin in (BCG) HSP65 and HPV16 E7. Clin. Exp. Immunol. 2000. 121: 216225.
  • 14
    Hauser, H., Shen, L., Gu, Q. L., Krueger, S. and Chen, S. Y., Secretory heat-shock protein as a dendritic cell-targeting molecule: A new strategy to enhance the potency of genetic vaccines. Gene Ther. 2004. 11: 924932.
  • 15
    Suzue, K., Zhou, X., Eisen, H. N. and Young, R. A., Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway. Proc. Natl. Acad. Sci. USA 1997. 94: 1314613151.
  • 16
    Bulut, Y., Michelsen, K. S., Hayrapetian, L., Naiki, Y., Spallek, R., Singh, M. and Arditi, M., Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J. Biol. Chem. 2005. 280: 2096120967.
  • 17
    Li, Z., Qiao, Y., Liu, B., Laska, E. J., Chakravarthi, P., Kulko, J. M., Bona, R. D. et al., Combination of imatinib mesylate with autologous leukocyte-derived heat shock protein and chronic myelogenous leukemia. Clin. Cancer Res. 2005. 11: 44604468.
  • 18
    Pilla, L., Squarcina, P., Coppa, J., Mazzaferro, V., Huber, V., Pende, D., Maccalli, C. et al., Natural killer and NK-like T-cell activation in colorectal carcinoma patients treated with autologous tumor-derived heat shock protein 96. Cancer Res. 2005. 65: 39423949.
  • 19
    Krause, S. W., Gastpar, R., Andreesen, R., Gross, C., Ullrich, H., Thonigs, G., Pfister, K. et al., Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: A clinical phase I trial. Clin. Cancer Res. 2004. 10: 36993707.
  • 20
    Gastpar, R., Gross, C., Rossbacher, L., Ellwart, J., Riegger, J. and Multhoff, G., The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J. Immunol. 2004. 172: 972980.
  • 21
    Gastpar, R., Gehrmann, M., Bausero, M. A., Asea, A., Gross, C., Schroeder, J. A. and Multhoff, G., Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 2005. 65: 52385247.
  • 22
    Apostolopoulos, V., Chelvanayagam, G., Xing, P. X. and McKenzie, I. F. C., Anti-MUC1 antibodies react directly with MUC1 peptides presented by class I H2 and HLA molecules. J. Immunol. 1998. 161: 767775.
  • 23
    Pisarev, V. M., Kinarsky, L., Caffrey, T., Hanisch, F. G., Sanderson, S., Hollingsworth, M. A. and Sherman, S., T cells recognize PD (N/T)R motif common in a variable number of tandem repeat and degenerate repeat sequences of MUC1. Int. Immunopharmacol. 2005. 5: 315330.
  • 24
    Cho, B. K., Palliser, D., Guillen, E., Wisniewski, J., Young, R. A., Chen, J., Eisen, H. N. et al., A proposed mechanism for the induction of cytotoxic T lymphocyte production by heat shock fusion proteins. Immunity 2000. 12: 263272.
  • 25
    Palliser, D., Guillen, E., Ju, M. and Eisen, H. N., Multiple intracellular routes in the cross-presentation of a soluble protein by murine dendritic cells. J. Immunol. 2005. 174: 18791887.
  • 26
    Tobian, A. A. R., Harding, C. V. and Canaday, D. H., Mycobacterium tuberculosis heat shock fusion protein enhances class I MHC cross-processing and -presentation by B lymphocytes. J. Immunol. 2005. 174: 52095214.
  • 27
    Tamura, Y., Peng, P., Liu, K., Daou, M. and Srivastava, P. K., Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997. 278: 117120.
  • 28
    Gullo, C. A. and Teoh, G., Heat shock proteins: to present or not, that is the question. Immunol. Lett. 2004. 94: 110.
  • 29
    Blachere, N. E., Li, Z., Chandawarkar, R. Y., Suto, R., Jaikaria, N. S., Basu, S., Udono, H. et al., Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J. Exp. Med. 1997. 186: 13151322.
  • 30
    Ciupitu, A. T., Petersson, M., O'Donnell, C. L., Williams, K., Jindal, S., Kiessling, R. et al., Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J. Exp. Med. 1998. 187: 685691.
  • 31
    Carlos, C. A., Dong, H. F., Howard, O. M., Oppenheim, J. J., Hanisch, F.-G. and Finn, O. J., Human tumor antigen MUC1 is chemotactic for immature dendritic cells and elicits maturation but does not promote Th1 type immunity. J. Immunol. 2005. 175: 16281635.
  • 32
    Correale, P., Walmsley, K., Zaremba, S., Zhu, M. Z., Schlom, J. and Tsang, K. Y., Generation of human cytolytic T lymphocyte lines directed against prostate specific antigen (PSA) employing a PSA oligoepitope peptide. J. Immunol. 1998. 161: 31863194.
  • 33
    Fossati, G., Izzo, G., Rizzi, E., Gancia, E., Modena, D., Moras, M. L., Niccolai, N. et al., Mycobacterium tuberculosis Chaperonin 10 is secreted in the macrophage phagosome: Is secretion due to dissociation and adoption of a partially helical structure at the membrane? J. Bacteriol. 2003. 185: 42564267.
  • 34
    Kantor, J., Abrams, S., Irvine, K., Snoy, P., Kaufman, H. and Schlom, J., Specific immunotherapy using a recombinant vaccinia virus expressing human carcinoembryonic antigen. Ann. NY Acad. Sci. 1993. 690: 370373.
  • 35
    Varga, S. M. and Welsh, R. M., Detection of a high frequency of virus-specific CD4+ T cells during acute infection with lymphocytic choriomeningitis virus. J. Immunol. 1998. 161: 32153218.