• 1
    Veazey, R. S., Mansfield, K. G., Tham, I. C., Carville, A. C., Shvetz, D. E., Forand, A. E. and Lackner, A. A., Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during simian immunodeficiency virus infection. J. Virol. 2000. 74: 1100111007.
  • 2
    Nascimbeni, M., Shin, E. C., Chiriboga, L., Kleiner, D. E. and Rehermann, B., Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004. 104: 478486.
  • 3
    Suni, M. A., Ghanekar, S. A., Houck, D. W., Maecker, H. T., Wormsley, S. B., Picker, L. J., Moss, R. B. et al., CD4(+)CD8(dim) T lymphocytes exhibit enhanced cytokine expression, proliferation and cytotoxic activity in response to HCMV and HIV-1 antigens. Eur. J. Immunol. 2001. 31: 25122520.
  • 4
    Periwal, S. B. and Cebra, J. J., Respiratory mucosal immunization with reovirus serotype 1/L stimulates virus-specific humoral and cellular immune responses, including double-positive (CD4+/CD8+) T cells. J. Virol. 1999. 73: 76337640.
  • 5
    Nam, K., Akari, H., Terao, K., Shibata, H., Kawamura, S. and Yoshikawa, Y., Peripheral blood extrathymic CD4(+)CD8(+) T cells with high cytotoxic activity are from the same lineage as CD4(+)CD8(–) T cells in cynomolgus monkeys. Int. Immunol. 2000. 12: 10951103.
  • 6
    Khatissian, E., Monceaux, V., Cumont, M. C., Ho Tsong Fang, R., Estaquier, J. and Hurtrel, B., Simian immunodeficiency virus infection of CD4+CD8+ T cells in a macaque with an unusually high peripheral CD4+CD8+ T lymphocyte count. AIDS Res. Hum. Retroviruses 2003. 19: 267274.
  • 7
    Smit-McBride, Z., Mattapallil, J. J., McChesney, M., Ferrick, D. and Dandekar, S., Gastrointestinal T lymphocytes retain high potential for cytokine responses but have severe CD4(+) T-cell depletion at all stages of simian immunodeficiency virus infection compared to peripheral lymphocytes. J. Virol. 1998. 72: 66466656.
  • 8
    Solano-Aguilar, G. I., Vengroski, K. G., Beshah, E., Douglass, L. W. and Lunney, J. K., Characterization of lymphocyte subsets from mucosal tissues in neonatal swine. Dev. Comp. Immunol. 2001. 25: 245263.
  • 9
    Aicher, W. K., Fujihashi, K., Taguchi, T., McGhee, J. R., Yamamoto, M., Eldridge, J. H., Gay, S. et al., Intestinal intraepithelial lymphocyte T cells are resistant to lpr gene-induced T cell abnormalities. Eur. J. Immunol. 1992. 22: 137145.
  • 10
    Reimann, J. and Rudolphi, A., Co-expression of CD8 alpha in CD4+ T cell receptor alpha beta + T cells migrating into the murine small intestine epithelial layer. Eur. J. Immunol. 1995. 25: 15801588.
  • 11
    Abuzakouk, M., Carton, J., Feighery, C., O'Donoghue, D. P., Weir, D. G. and O'Farrelly, C., CD4+ CD8+ and CD8alpha+ beta T lymphocytes in human small intestinal lamina propria. Eur. J. Gastroenterol. Hepatol. 1998. 10: 325329.
  • 12
    Veazey, R. S., Rosenzweig, M., Shvetz, D. E., Pauley, D. R., DeMaria, M., Chalifoux, L. V., Johnson, R. P. et al., Characterization of gut-associated lymphoid tissue (GALT) of normal rhesus macaques. Clin. Immunol. Immunopathol. 1997. 82: 230242.
  • 13
    Sala, P., Tonutti, E., Feruglio, C., Florian, F. and Colombatti, A., Persistent expansions of CD4+ CD8+ peripheral blood T cells. Blood 1993. 82: 15461552.
  • 14
    Ortolani, C., Forti, E., Radin, E., Cibin, R. and Cossarizza, A., Cytofluorimetric identification of two populations of double positive (CD4+,CD8+) T lymphocytes in human peripheral blood. Biochem. Biophys. Res. Commun. 1993. 191: 601609.
  • 15
    Weiss, L., Roux, A., Garcia, S., Demouchy, C., Haeffner-Cavaillon, N., Kazatchkine, M. D. and Gougeon, M. L., Persistent expansion, in a human immunodeficiency virus-infected person, of V beta-restricted CD4+CD8+ T lymphocytes that express cytotoxicity-associated molecules and are committed to produce interferon-gamma and tumor necrosis factor-alpha. J. Infect. Dis. 1998. 178: 11581162.
  • 16
    Takahashi, M., Ido, E., Uesaka, H., Fukushima, T., Ibuki, K., Miura, T., Hayami, M. et al., Comparison of susceptibility to SIVmac239 infection between CD4(+) and CD4(+)8(+) T cells. Arch. Virol. 2005. 150: 15171528.
  • 17
    Akari, H., Nam, K. H., Mori, K., Otani, I., Shibata, H., Adachi, A., Terao, K. et al., Effects of SIVmac infection on peripheral blood CD4+CD8+ T lymphocytes in cynomolgus macaques. Clin. Immunol. 1999. 91: 321329.
  • 18
    Scott, C. S., Wheeler, R., Ford, P., Bynoe, A. G. and Roberts, B. E., T lymphocyte subpopulations in idiopathic thrombocytopenic purpura (ITP). Scand. J. Haematol. 1983. 30: 401406.
  • 19
    Matsui, M., Fukuyama, H., Akiguchi, I. and Kameyama, M., Circulating CD4+CD8+ cells in myasthenia gravis: Supplementary immunological parameter for long-term prognosis. J. Neurol. 1989. 236: 329335.
  • 20
    Mizuki, M., Tagawa, S., Machii, T., Shibano, M., Tatsumi, E., Tsubaki, K., Tako, H. et al., Phenotypical heterogeneity of CD4+CD8+ double-positive chronic T lymphoid leukemia. Leukemia 1998. 12: 499504.
  • 21
    Airo, P., Rossi, G., Facchetti, F., Marocolo, D., Garza, L., Lanfranchi, A., Prati, E. et al., Monoclonal expansion of large granular lymphocytes with a CD4+ CD8dim+/– phenotype associated with hairy cell leukemia. Haematologica 1995. 80: 146149.
  • 22
    Bagot, M., Echchakir, H., Mami-Chouaib, F., Delfau-Larue, M. H., Charue, D., Bernheim, A., Chouaib, S. et al., Isolation of tumor-specific cytotoxic CD4+ and CD4+CD8dim+ T-cell clones infiltrating a cutaneous T-cell lymphoma. Blood 1998. 91: 43314341.
  • 23
    Jimenez, E., Sacedon, R., Vicente, A., Hernandez-Lopez, C., Zapata, A. G. and Varas, A., Rat peripheral CD4+CD8+ T lymphocytes are partially immunocompetent thymus-derived cells that undergo post-thymic maturation to become functionally mature CD4+ T lymphocytes. J. Immunol. 2002. 168: 50055013.
  • 24
    Zuckermann, F. A. and Husmann, R. J., Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 1996. 87: 500512.
  • 25
    Veazey, R. S., DeMaria, M., Chalifoux, L. V., Shvetz, D. E., Pauley, D. R., Knight, H. L., Rosenzweig, M. et al., Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 1998. 280: 427431.
  • 26
    Veazey, R. S. and Lackner, A. A., Getting to the guts of HIV pathogenesis. J. Exp. Med. 2004. 200: 697700.
  • 27
    Brenchley, J. M., Schacker, T. W., Ruff, L. E., Price, D. A., Taylor, J. H., Beilman, G. J., Nguyen, P. L. et al., CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 2004. 200: 749759.
  • 28
    Mehandru, S., Poles, M. A., Tenner-Racz, K., Horowitz, A., Hurley, A., Hogan, C., Boden, D. et al., Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 2004. 200: 761770.
  • 29
    Pitcher, C. J., Hagen, S. I., Walker, J. M., Lum, R., Mitchell, B. L., Maino, V. C., Axthelm, M. K. et al., Development and homeostasis of T cell memory in rhesus macaque. J. Immunol. 2002. 168: 2943.
  • 30
    Ley, K. and Kansas, G. S., Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat. Rev. Immunol. 2004. 4: 325335.
  • 31
    Sallusto, F., Lenig, D., Mackay, C. R. and Lanzavecchia, A., Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 1998. 187: 875883.
  • 32
    Pier, G. B., Ceri, H., Mody, C. and Preston, M., T-cell maturation and activation. In Pier, G. B., Lyczak, J. B. and Wetzler, L. M. (Eds.) Immunology, infection and immunity. ASM Press, Washington 2004, pp 315342.
  • 33
    Ivetic, A. and Ridley, A. J., The telling tail of L-selectin. Biochem. Soc. Trans. 2004. 32: 11181121.
  • 34
    Loetscher, M., Gerber, B., Loetscher, P., Jones, S. A., Piali, L., Clark-Lewis, I., Baggiolini, M. et al., Chemokine receptor specific for IP10 and Mig: Structure, function, and expression in activated T-lymphocytes. J. Exp. Med. 1996. 184: 963969.
  • 35
    Cole, K. E., Strick, C. A., Paradis, T. J., Ogborne, K. T., Loetscher, M., Gladue, R. P., Lin, W. et al., Interferon-inducible T cell alpha chemoattractant (I-TAC): A novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J. Exp. Med. 1998. 187: 20092021.
  • 36
    Farber, J. M., Mig and IP-10: CXC chemokines that target lymphocytes. J. Leukoc. Biol. 1997. 61: 246257.
  • 37
    Loetscher, M., Loetscher, P., Brass, N., Meese, E. and Moser, B., Lymphocyte-specific chemokine receptor CXCR3: Regulation, chemokine binding and gene localization. Eur. J. Immunol. 1998. 28: 36963705.
  • 38
    Papadakis, K. A., Prehn, J., Zhu, D., Landers, C., Gaiennie, J., Fleshner, P. R. and Targan, S. R., Expression and regulation of the chemokine receptor CXCR3 on lymphocytes from normal and inflammatory bowel disease mucosa. Inflamm. Bowel Dis. 2004. 10: 778788.
  • 39
    Veazey, R. S., Lifson, J. D., Pandrea, I., Purcell, J., Piatak, M., Jr. and Lackner, A. A., Simian immunodeficiency virus infection in neonatal macaques. J. Virol. 2003. 77: 87838792.
  • 40
    Mattapallil, J. J., Douek, D. C., Hill, B., Nishimura, Y., Martin, M. and Roederer, M., Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 2005. 434: 10931097.
  • 41
    Li, Q., Duan, L., Estes, J. D., Ma, Z. M., Rourke, T., Wang, Y., Reilly, C. et al., Peak SIV replication in resting memory CD4(+) T cells depletes gut lamina propria CD4(+) T cells. Nature 2005. 434: 11481152.
  • 42
    Veazey, R. S., Marx, P. A. and Lackner, A. A., The mucosal immune system: Primary target for HIV infection and AIDS. Trends Immunol. 2001. 22: 626633.
  • 43
    Zloza, A., Sullivan, Y. B., Connick, E., Landay, A. L. and Al-Harthi, L., CD8+ T cells that express CD4 on their surface (CD4dimCD8bright T cells) recognize an antigen-specific target, are detected in vivo, and can be productively infected by T-tropic HIV. Blood 2003. 102: 21562164.
  • 44
    Flamand, L., Crowley, R. W., Lusso, P., Colombini-Hatch, S., Margolis, D. M. and Gallo, R. C., Activation of CD8+ T lymphocytes through the T cell receptor turns on CD4 gene expression: Implications for HIV pathogenesis. Proc. Natl. Acad. Sci. USA 1998. 95: 31113116.
  • 45
    Imlach, S., McBreen, S., Shirafuji, T., Leen, C., Bell, J. E. and Simmonds, P., Activated peripheral CD8 lymphocytes express CD4 in vivo and are targets for infection by human immunodeficiency virus type 1. J. Virol. 2001. 75: 1155511564.
  • 46
    Kitchen, S. G., Korin, Y. D., Roth, M. D., Landay, A. and Zack, J. A., Costimulation of naive CD8(+) lymphocytes induces CD4 expression and allows human immunodeficiency virus type 1 infection. J. Virol. 1998. 72: 90549060.
  • 47
    Veazey, R. S., Klasse, P. J., Ketas, T. J., Reeves, J. D., Piatak, M., Jr., Kunstman, K., Kuhmann, S. E. et al., Use of a small molecule CCR5 inhibitor in macaques to treat simian immunodeficiency virus infection or prevent simian-human immunodeficiency virus infection. J. Exp. Med. 2003. 198: 15511562.
  • 48
    Pahar, B., Li, J., Rourke, T., Miller, C. J. and McChesney, M. B., Detection of antigen-specific T cell interferon gamma expression by ELISPOT and cytokine flow cytometry assays in rhesus macaques. J. Immunol. Methods 2003. 282: 103115.
  • 49
    Waldrop, S. L., Pitcher, C. J., Peterson, D. M., Maino, V. C. and Picker, L. J., Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow cytometry: Evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency. J. Clin. Invest. 1997. 99: 17391750.