• 1
    Hemler, M. E., Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell Dev. Biol. 2003. 19: 397422.
  • 2
    Boucheix, C. and Rubinstein, E., Tetraspanins. Cell Mol. Life Sci. 2001. 58: 11891205.
  • 3
    Levy, S. and Shoham, T., The tetraspanin web modulates immune-signalling complexes. Nat. Rev. Immunol. 2005. 5: 136148.
  • 4
    Mannion, B. A., Berditchevski, F., Kraeft, S. K., Chen, L. B. and Hemler, M. E., Transmembrane-4 superfamily proteins CD81 (TAPA-1), CD82, CD63, and CD53 specifically associated with integrin alpha 4 beta 1 (CD49d/CD29). J. Immunol. 1996. 157: 20392047.
  • 5
    Yauch, R. L., Berditchevski, F., Harler, M. B., Reichner, J. and Hemler, M. E., Highly stoichiometric, stable, and specific association of integrin alpha3beta1 with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol. Biol. Cell 1998. 9: 27512765.
  • 6
    Serru, V., Le Naour, F., Billard, M., Azorsa, D. O., Lanza, F., Boucheix, C. and Rubinstein, E., Selective tetraspan-integrin complexes (CD81/alpha4beta1, CD151/alpha3beta1, CD151/alpha6beta1) under conditions disrupting tetraspan interactions. Biochem. J. 1999. 340 ( Pt 1): 103111.
  • 7
    Little, K. D., Hemler, M. E. and Stipp, C. S., Dynamic regulation of a GPCR-tetraspanin-G protein complex on intact cells: central role of CD81 in facilitating GPR56-Galpha q/11 association. Mol. Biol. Cell 2004. 15: 23752387.
  • 8
    Horvath, G., Serru, V., Clay, D., Billard, M., Boucheix, C. and Rubinstein, E., CD19 is linked to the integrin-associated tetraspans CD9, CD81, and CD82. J. Biol. Chem. 1998. 273: 3053730543.
  • 9
    Imai, T. and Yoshie, O., C33 antigen and M38 antigen recognized by monoclonal antibodies inhibitory to syncytium formation by human T cell leukemia virus type 1 are both members of the transmembrane 4 superfamily and associate with each other and with CD4 or CD8 in T cells. J. Immunol. 1993. 151: 64706481.
  • 10
    Silvie, O., Rubinstein, E., Franetich, J. F., Prenant, M., Belnoue, E., Renia, L., Hannoun, L. et al., Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat. Med. 2003. 9: 9396.
  • 11
    Lindenbach, B. D., Evans, M. J., Syder, A. J., Wolk, B., Tellinghuisen, T. L., Liu, C. C., Maruyama, T. et al., Complete replication of hepatitis C virus in cell culture. Science 2005. 309: 623626.
  • 12
    Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K. et al., Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 2005. 11: 791796.
  • 13
    Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T., Burton, D. R., Wieland, S. F. et al., Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA 2005. 102: 92949299.
  • 14
    Pileri, P., Uematsu, Y., Campagnoli, S., Galli, G., Falugi, F., Petracca, R., Weiner, A. J. et al., Binding of hepatitis C virus to CD81. Science 1998. 282: 938941.
  • 15
    Higginbottom, A., Quinn, E. R., Kuo, C. C., Flint, M., Wilson, L. H., Bianchi, E., Nicosia, A. et al., Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J. Virol. 2000. 74: 36423649.
  • 16
    Zhang, X. A., Bontrager, A. L. and Hemler, M. E., Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J. Biol. Chem. 2001. 276: 2500525013.
  • 17
    Yauch, R. L. and Hemler, M. E., Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase. Biochem. J. 2000. 351 Pt 3: 629637.
  • 18
    Carloni, V., Mazzocca, A. and Ravichandran, K. S., Tetraspanin CD81 is linked to ERK/MAPKinase signaling by Shc in liver tumor cells. Oncogene 2004. 23: 15661574.
  • 19
    Lagaudriere-Gesbert, C., Le Naour, F., Lebel-Binay, S., Billard, M., Lemichez, E., Boquet, P., Boucheix, C. et al., Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82, suggests a common role in costimulation, cell adhesion, and migration: only CD9 upregulates HB-EGF activity. Cell Immunol. 1997. 182: 105112.
  • 20
    Tai, X. G., Toyooka, K., Yashiro, Y., Abe, R., Park, C. S., Hamaoka, T., Kobayashi, M. et al., CD9-mediated costimulation of TCR-triggered naive T cells leads to activation followed by apoptosis. J. Immunol. 1997. 159: 37993807.
  • 21
    Yashiro-Ohtani, Y., Zhou, X. Y., Toyo-Oka, K., Tai, X. G., Park, C. S., Hamaoka, T., Abe, R. et al., Non-CD28 costimulatory molecules present in T cell rafts induce T cell costimulation by enhancing the association of TCR with rafts. J. Immunol. 2000. 164: 12511259.
  • 22
    Wack, A., Soldaini, E., Tseng, C., Nuti, S., Klimpel, G. and Abrignani, S., Binding of the hepatitis C virus envelope protein E2 to CD81 provides a co-stimulatory signal for human T cells. Eur. J. Immunol. 2001. 31: 166175.
  • 23
    Pfistershammer, K., Majdic, O., Stockl, J., Zlabinger, G., Kirchberger, S., Steinberger, P. and Knapp, W., CD63 as an activation-linked T cell costimulatory element. J. Immunol. 2004. 173: 60006008.
  • 24
    Soldaini, E., Wack, A., D'Oro, U., Nuti, S., Ulivieri, C., Baldari, C. T. and Abrignani, S., T cell costimulation by the hepatitis C virus envelope protein E2 binding to CD81 is mediated by Lck. Eur. J .Immunol. 2003. 33: 455464.
  • 25
    Tseng, C. T., Miskovsky, E., Houghton, M. and Klimpel, G. R., Characterization of liver T-cell receptor gammadelta T cells obtained from individuals chronically infected with hepatitis C virus (HCV): evidence for these T cells playing a role in the liver pathology associated with HCV infections. Hepatology 2001. 33: 13121320.
  • 26
    Delaguillaumie, A., Lagaudriere-Gesbert, C., Popoff, M. R. and Conjeaud, H., Rho GTPases link cytoskeletal rearrangements and activation processes induced via the tetraspanin CD82 in T lymphocytes. J. Cell Sci. 2002. 115: 433443.
  • 27
    Fleming, T. J., Donnadieu, E., Song, C. H., Laethem, F. V., Galli, S. J. and Kinet, J. P., Negative regulation of Fc epsilon RI-mediated degranulation by CD81. J. Exp. Med. 1997. 186: 13071314.
  • 28
    Tarrant, J. M., Groom, J., Metcalf, D., Li, R., Borobokas, B., Wright, M. D., Tarlinton, D. et al., The absence of Tssc6, a member of the tetraspanin superfamily, does not affect lymphoid development but enhances in vitro T-cell proliferative responses. Mol. Cell Biol. 2002. 22: 50065018.
  • 29
    Crotta, S., Stilla, A., Wack, A., D'Andrea, A., Nuti, S., D'Oro, U., Mosca, M. et al., Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med. 2002. 195: 3541.
  • 30
    Tseng, C. T. and Klimpel, G. R., Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 2002. 195: 4349.
  • 31
    Claas, C., Stipp, C. S. and Hemler, M. E., Evaluation of prototype transmembrane 4 superfamily protein complexes and their relation to lipid rafts. J. Biol. Chem. 2001. 276: 79747984.
  • 32
    Charrin, S., Manie, S., Oualid, M., Billard, M., Boucheix, C. and Rubinstein, E., Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett 2002. 516: 139144.
  • 33
    Simons, K. and Ikonen, E., Functional rafts in cell membranes. Nature 1997. 387: 569572.
  • 34
    Montixi, C., Langlet, C., Bernard, A. M., Thimonier, J., Dubois, C., Wurbel, M. A., Chauvin, J. P. et al., Engagement of T cell receptor triggers its recruitment to low-density detergent-insoluble membrane domains. EMBO J. 1998. 17: 53345348.
  • 35
    Xavier, R., Brennan, T., Li, Q., McCormack, C. and Seed, B., Membrane compartmentation is required for efficient T cell activation. Immunity 1998. 8: 723732.
  • 36
    Valitutti, S., Dessing, M., Aktories, K., Gallati, H. and Lanzavecchia, A., Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 1995. 181: 577584.
  • 37
    Acuto, O. and Cantrell, D., T cell activation and the cytoskeleton. Annu. Rev. Immunol. 2000. 18: 165184.
  • 38
    Vicente-Manzanares, M. and Sanchez-Madrid, F., Role of the cytoskeleton during leukocyte responses. Nat. Rev. Immunol. 2004. 4: 110122.
  • 39
    Yanez-Mo, M., Mittelbrunn, M. and Sanchez-Madrid, F., Tetraspanins and intercellular interactions. Microcirculation 2001. 8: 153168.
  • 40
    Lagaudriere-Gesbert, C., Lebel-Binay, S., Hubeau, C., Fradelizi, D. and Conjeaud, H., Signaling through the tetraspanin CD82 triggers its association with the cytoskeleton leading to sustained morphological changes and T cell activation. Eur. J. Immunol. 1998. 28: 43324344.
  • 41
    Mittelbrunn, M., Yanez-Mo, M., Sancho, D., Ursa, A. and Sanchez-Madrid, F., Cutting edge: dynamic redistribution of tetraspanin CD81 at the central zone of the immune synapse in both T lymphocytes and APC. J. Immunol. 2002. 169: 66916695.
  • 42
    Delaguillaumie, A., Harriague, J., Kohanna, S., Bismuth, G., Rubinstein, E., Seigneuret, M. and Conjeaud, H., Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J. Cell Sci. 2004. 117: 52695282.
  • 43
    Perussia, B., Fc receptors on natural killer cells. Curr. Top. Microbiol. Immunol. 1998. 230: 6388.
  • 44
    Einspahr, K. J., Abraham, R. T., Binstadt, B. A., Uehara, Y. and Leibson, P. J., Tyrosine phosphorylation provides an early and requisite signal for the activation of natural killer cell cytotoxic function. Proc. Natl. Acad. Sci. USA 1991. 88: 62796283.
  • 45
    Horejsi, V., Drbal, K., Cebecauer, M., Cerny, J., Brdicka, T., Angelisova, P. and Stockinger, H., GPI-microdomains: a role in signalling via immunoreceptors. Immunol. Today 1999. 20: 356361.
  • 46
    Cherukuri, A., Dykstra, M. and Pierce, S. K., Floating the raft hypothesis: lipid rafts play a role in immune cell activation. Immunity 2001. 14: 657660.
  • 47
    Ortaldo, J. R. and Young, H. A., Expression of IFN-gamma upon triggering of activating Ly49D NK receptors in vitro and in vivo: costimulation with IL-12 or IL-18 overrides inhibitory receptors. J. Immunol. 2003. 170: 17631769.
  • 48
    Standeven, L. J., Carlin, L. M., Borszcz, P., Davis, D. M. and Burshtyn, D. N., The actin cytoskeleton controls the efficiency of killer Ig-like receptor accumulation at inhibitory NK cell immune synapses. J. Immunol. 2004. 173: 56175625.
  • 49
    Frigeri, L. and Apgar, J. R., The role of actin microfilaments in the down-regulation of the degranulation response in RBL-2H3 mast cells. J. Immunol. 1999. 162: 22432250.
  • 50
    Holowka, D., Sheets, E. D. and Baird, B., Interactions between Fc(epsilon)RI and lipid raft components are regulated by the actin cytoskeleton. J. Cell Sci. 2000. 113 ( Pt 6): 10091019.
  • 51
    Tolarova, H., Draberova, L., Heneberg, P. and Draber, P., Involvement of filamentous actin in setting the threshold for degranulation in mast cells. Eur. J. Immunol. 2004. 34: 16271636.
  • 52
    Rosa, D., Campagnoli, S., Moretto, C., Guenzi, E., Cousens, L., Chin, M., Dong, C. et al., A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells. Proc. Natl. Acad. Sci. USA 1996. 93: 17591763.
  • 53
    Heile, J. M., Fong, Y. L., Rosa, D., Berger, K., Saletti, G., Campagnoli, S., Bensi, G. et al., Evaluation of hepatitis C virus glycoprotein E2 for vaccine design: an endoplasmic reticulum-retained recombinant protein is superior to secreted recombinant protein and DNA-based vaccine candidates. J. Virol. 2000. 74: 68856892.
  • 54
    Cheng, P. C., Dykstra, M. L., Mitchell, R. N. and Pierce, S. K., A role for lipid rafts in B cell antigen receptor signaling and antigen targeting. J. Exp. Med. 1999. 190: 15491560.