SEARCH

SEARCH BY CITATION

  • 1
    Galanos, C., Freudenberg, M. A., Lüderitz, O., Rietschel, E. T. and Westphal, O., Chemical, physicochemical and biological properties of bacterial lipopolysaccharides. In Cohen, E. (Ed.) Biomedical applications of the horseshoe crab (Limulidae). A. R. Liss, New York 1979, pp 321332.
  • 2
    Alexander, C. and Rietschel, E. T., Bacterial lipopolysaccharides and innate immunity. J. Endotoxin Res. 2001. 7: 167202.
  • 3
    Freudenberg, M. A., Merlin, T., Gumenscheimer, M., Kalis, C., Landmann, R. and Galanos, C., Role of lipopolysaccharide susceptibility in the innate immune response to Salmonella typhimurium infection: LPS, a primary target for recognition of Gram-negative bacteria. Microb. Infect. 2001. 3: 12131222.
  • 4
    Beutler, B., Hoebe, K., Du, X. and Ulevitch, R. J., How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol. 2003. 74: 479485.
  • 5
    Karima, R., Matsumoto, S., Higashi, H. and Matsushima, K., The molecular pathogenesis of endotoxic shock and organ failure. Mol. Med. Today 1999. 5: 123132.
  • 6
    Ginsburg, I., The role of bacteriolysis in the pathophysiology of inflammation, infection and post-infectious sequelae. APMIS 2002. 110: 753770.
  • 7
    Gumenscheimer, M., Mitov, I., Galanos, C. and Freudenberg, M. A., Beneficial or deleterious effects of a preexisting hypersensitivity to bacterial components on the course and outcome of infection. Infect. Immun. 2002. 70: 55965603.
  • 8
    Beutler, B., Innate immunity: an overview. Mol. Immunol. 2004. 40: 845859.
  • 9
    Leal-Berumen, I., Conlon, P. and Marshall, J. S., IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J. Immunol. 1994. 152: 54685476.
  • 10
    Costa, J. J., Weller, P. F. and Galli, S. J., The cells of the allergic response: mast cells, basophils, and eosinophils. JAMA 1997. 278: 18151822.
  • 11
    Turner, H. and Kinet, J. P., Signalling through the high-affinity IgE receptor FcϵR1. Nature 1999. 402: B24–B30.
  • 12
    Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Huffel, C. V., Du, X., Birdwell, D. et al., Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998. 282: 20852088.
  • 13
    Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T. et al., Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nat. Immunol. 2002. 3: 667672.
  • 14
    Kimoto, M., Nagasawa, K. and Miyake, K., Role of TLR4/MD-2 and RP105/MD-1 in innate recognition of lipopolysaccharide. Scand. J. Infect. Dis. 2003. 35: 568572.
  • 15
    Wright, S. D., Ramos, R. A., Tobias, P. S., Ulevitch, R. J. and Mathison, J. C., CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990. 249: 14311433.
  • 16
    Ulevitch, R. J. and Tobias, P. S., Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu. Rev. Immunol. 1995. 13: 437457.
  • 17
    Tapping, R. I. and Tobias, P. S., Soluble CD14-mediated cellular responses to lipopolysaccharide. Chem. Immunol. 2000. 74: 108121.
  • 18
    Kitchens, R. L., Thompson, P. A., Viriyakosol, S., O'Keefe, G. E. and Munford, R. S., Plasma CD14 decreases monocyte responses to LPS by transferring cell-bound LPS to plasma lipoproteins. J. Clin. Invest. 2001. 108: 485493.
  • 19
    Hamann, L., Alexander, C., Stamme, C., Zahringer, U. and Schumann, R. R., Acute-phase concentrations of lipopolysaccharide (LPS)-binding protein inhibit innate immune cell activation by different LPS chemotypes via different mechanisms. Infect. Immun. 2005. 73: 193200.
  • 20
    Jiang, Z., Georgel, P., Du, X., Shamel, L., Sovath, S., Mudd, S., Huber, M. et al., CD14 is required for MyD88-independent LPS signaling. Nat. Immunol. 2005. 6: 565570.
  • 21
    Lüderitz, O., Freudenberg, M. A., Galanos, C., Lehmann, V., Rietschel, E. T. and Shaw, D. H., Lipopolysaccharides of gram-negative bacteria. In Bronner, F. and Kleinzeller, A. (Eds.) Current Topics in Membranes & Transport: Membrane Lipids of Prokaryotes. Academic Press, New York 1982, pp 79150.
  • 22
    Caroff, M. and Karibian, D., Structure of bacterial lipopolysaccharides. Carbohydr. Res. 2003. 338: 24312447.
  • 23
    Kapp, A., Freudenberg, M. and Galanos, C., Induction of human granulocyte chemiluminescence by bacterial lipopolysaccharides. Infect. Immun. 1987. 55: 758761.
  • 24
    Freudenberg, M. A. and Galanos, C., Metabolism of LPS in vivo. In Ryan, J. L. and Morrison, D. C. (Eds.) Bacterial Endotoxic Lipopolysaccharides, Immunopharmacology and Pathophysiology. CRC Press, Boca Raton 1992275294.
  • 25
    Kalis, C., Kanzler, B., Lembo, A., Poltorak, A., Galanos, C. and Freudenberg, M. A., Toll-like receptor 4 expression levels determine the degree of LPS-susceptibility in mice. Eur. J. Immunol. 2003. 33: 798805.
  • 26
    Masuda, A., Yoshikai, Y., Aiba, K. and Matsuguchi, T., Th2 cytokine production from mast cells is directly induced by lipopolysaccharide and distinctly regulated by c-Jun N-terminal kinase and p38 pathways. J. Immunol. 2002. 169: 38013810.
  • 27
    Ulevitch, R. J. and Tobias, P. S., Recognition of gram-negative bacteria and endotoxin by the innate immune system. Curr. Opin. Immunol. 1999. 11: 1922.
  • 28
    Jiang, Q., Akashi, S., Miyake, K. and Petty, H. R., Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J. Immunol. 2000. 165: 35413544.
  • 29
    McCurdy, J. D., Lin, T. J. and Marshall, J. S., Toll-like receptor 4-mediated activation of murine mast cells. J. Leukoc. Biol. 2001. 70: 977984.
  • 30
    Supajatura, V., Ushio, H., Nakao, A., Okumura, K., Ra, C. and Ogawa, H., Protective roles of mast cells against enterobacterial infection are mediated by Toll-like receptor 4. J. Immunol. 2001. 167: 22502256.
  • 31
    Stassen, M., Muller, C., Arnold, M., Hultner, L., Klein-Hessling, S., Neudorfl, C., Reineke, T. et al., IL-9 and IL-13 production by activated mast cells is strongly enhanced in the presence of lipopolysaccharide: NF-kappa B is decisively involved in the expression of IL-9. J. Immunol. 2001. 166: 43914398.
  • 32
    Applequist, S. E., Wallin, R. P. and Ljunggren, H. G., Variable expression of Toll-like receptor in murine innate and adaptive immune cell lines. Int. Immunol. 2002. 14: 10651074.
  • 33
    Ikeda, T. and Funaba, M., Altered function of murine mast cells in response to lipopolysaccharide and peptidoglycan. Immunol. Lett. 2003. 88: 2126.
  • 34
    Varadaradjalou, S., Feger, F., Thieblemont, N., Hamouda, N. B., Pleau, J. M., Dy, M. and Arock, M., Toll-like receptor 2 (TLR2) and TLR4 differentially activate human mast cells. Eur. J. Immunol. 2003. 33: 899906.
  • 35
    Matsuura, K., Ishida, T., Setoguchi, M., Higuchi, Y., Akizuki, S. and Yamamoto, S., Upregulation of mouse CD14 expression in Kupffer cells by lipopolysaccharide. J. Exp. Med. 1994. 179: 16711676.
  • 36
    Landmann, R., Knopf, H. P., Link, S., Sansano, S., Schumann, R. and Zimmerli, W., Human monocyte CD14 is upregulated by lipopolysaccharide. Infect. Immun. 1996. 64: 17621769.
  • 37
    Merlin, T., Woelky-Bruggmann, R., Fearns, C., Freudenberg, M. and Landmann, R., Expression and role of CD14 in mice sensitized to lipopolysaccharide by Propionibacterium acnes. Eur. J. Immunol. 2002. 32: 761772.
  • 38
    Hayashi, J., Masaka, T. and Ishikawa, I., Increased levels of soluble CD14 in sera of periodontitis patients. Infect. Immun. 1999. 67: 417420.
  • 39
    Hoheisel, G., Zheng, L., Teschler, H., Striz, I. and Costabel, U., Increased soluble CD14 levels in BAL fluid in pulmonary tuberculosis. Chest 1995. 108: 16141616.
  • 40
    Lin, B., Noring, R., Steere, A. C., Klempner, M. S. and Hu, L. T., Soluble CD14 levels in the serum, synovial fluid, and cerebrospinal fluid of patients with various stages of Lyme disease. J. Infect. Dis. 2000. 181: 11851188.
  • 41
    Wenisch, C., Wenisch, H., Parschalk, B., Vanijanonta, S., Burgmann, H., Exner, M., Zedwitz-Liebenstein, K. et al., Elevated levels of soluble CD14 in serum of patients with acute Plasmodium falciparum malaria. Clin. Exp. Immunol. 1996. 105: 7478.
  • 42
    Liu, S., Khemlani, L. S., Shapiro, R. A., Johnson, M. L., Liu, K., Geller, D. A., Watkins, S. C. et al., Expression of CD14 by hepatocytes: upregulation by cytokines during endotoxemia. Infect. Immun. 1998. 66: 50895098.
  • 43
    Nockher, W. A., Wick, M. and Pfister, H. W., Cerebrospinal fluid levels of soluble CD14 in inflammatory and non-inflammatory diseases of the CNS: upregulation during bacterial infections and viral meningitis. J. Neuroimmunol. 1999. 101: 161169.
  • 44
    Bas, S., Gauthier, B. R., Spenato, U., Stingelin, S. and Gabay, C., CD14 is an acute-phase protein. J. Immunol. 2004. 172: 44704479.
  • 45
    Frey, E. A., Miller, D. S., Jahr, T. G., Sundan, A., Bazil, V., Espevik, T., Finlay, B. B. and Wright, S. D., Soluble CD14 participates in the response of cells to lipopolysaccharide. J. Exp. Med. 1992. 176: 16651671.
  • 46
    Pugin, J., Schurer-Maly, C. C., Leturcq, D., Moriarty, A., Ulevitch, R. J. and Tobias, P. S., Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc. Natl. Acad. Sci. USA 1993. 90: 27442748.
  • 47
    Haziot, A., Rong, G. W., Silver, J. and Goyert, S. M., Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. J. Immunol. 1993. 151: 15001507.
  • 48
    Golenbock, D. T., Bach, R. R., Lichenstein, H., Juan, T. S., Tadavarthy, A. and Moldow, C. F., Soluble CD14 promotes LPS activation of CD14-deficient PNH monocytes and endothelial cells. J. Lab. Clin. Med. 1995. 125: 662671.
  • 49
    Hayashi, J., Masaka, T., Saito, I. and Ishikawa, I., Soluble CD14 mediates lipopolysaccharide-induced intercellular adhesion molecule 1 expression in cultured human gingival fibroblasts. Infect. Immun. 1996. 64: 49464951.
  • 50
    Landmann, R., Zimmerli, W., Sansano, S., Link, S., Hahn, A., Glauser, M. P. and Calandra, T., Increased circulating soluble CD14 is associated with high mortality in gram-negative septic shock. J. Infect. Dis. 1995. 171: 639644.
  • 51
    Wagner, C., Deppisch, R., Denefleh, B., Hug, F., Andrassy, K. and Hansch, G. M., Expression patterns of the lipopolysaccharide receptor CD14, and the FCgamma receptors CD16 and CD64 on polymorphonuclear neutrophils: data from patients with severe bacterial infections and lipopolysaccharide-exposed cells. Shock 2003. 19: 512.
  • 52
    Perera, P. Y., Vogel, S. N., Detore, G. R., Haziot, A. and Goyert, S. M., CD14-dependent and CD14-independent signaling pathways in murine macrophages from normal and CD14 knockout mice stimulated with lipopolysaccharide or taxol. J. Immunol. 1997. 158: 44224429.
  • 53
    Haziot, A., Lin, X. Y., Zhang, F. and Goyert, S. M., The induction of acute phase proteins by lipopolysaccharide uses a novel pathway that is CD14-independent. J. Immunol. 1998. 160: 25702572.
  • 54
    Kim, J. I., Lee, C. J., Jin, M. S., Lee, C. H., Paik, S. G., Lee, H. and Lee, J. O., Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J. Biol. Chem. 2005. 280: 1134711351.
  • 55
    Jiao, B. H., Freudenberg, M. and Galanos, C., Characterization of the lipid A component of genuine smooth-form lipopolysaccharide. Eur. J. Biochem. 1989. 180: 515518.
  • 56
    Marone, G., de Crescenzo, G., Adt, M., Patella, V., Arbustini, E. and Genovese, A., Immunological characterization and functional importance of human heart mast cells. Immunopharmacology 1995. 31: 118.
  • 57
    de Kleijn, D. and Pasterkamp, G., Toll-like receptors in cardiovascular diseases. Cardiovasc. Res. 2003. 60: 5867.
  • 58
    Shoenfeld, Y., Sherer, Y. and Harats, D., Artherosclerosis as an infectious, inflammatory and autoimmune disease. Trends Immunol. 2001. 22: 293295.
  • 59
    Belland, R. J., Ouellette, S. P., Gieffers, J. and Byrne, G. I., Chlamydia pneumoniae and atherosclerosis. Cell. Microbiol. 2004. 6: 117127.
  • 60
    Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. and Medzhitov, R., Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 2004. 118: 229241.
  • 61
    Westphal, O., Lüderitz, O. and Bister, F., Über die Extraktion von Bakterien mit Phenol/Wasser. Z. Naturforsch. B 1952. 7: 148155.
  • 62
    Galanos, C. and Luderitz, O., Electrodialysis of lipopolysaccharides and their conversion to uniform salt forms. Eur. J. Biochem. 1975. 54: 603610.
  • 63
    Galanos, C., Luderitz, O. and Westphal, O., Preparation and properties of a standardized lipopolysaccharide from Salmonella abortus equi (Novo-Pyrexal). Zentralbl. Bakteriol. [A] 1979. 243: 226244.
  • 64
    Galanos, C., Luderitz, O. and Westphal, O., A new method for the extraction of R lipopolysaccharides. Eur. J. Biochem. 1969. 9: 245249.
  • 65
    Galanos, C., Luderitz, O., Freudenberg, M., Brade, L., Schade, U., Rietschel, E. T., Kusumoto, S. and Shiba, T., Biological activity of synthetic heptaacyl lipid A representing a component of Salmonella minnesota R595 lipid A. Eur. J. Biochem. 1986. 160: 5559.
  • 66
    Sing, A., Merlin, T., Knopf, H. P., Nielsen, P. J., Loppnow, H., Galanos, C. and Freudenberg, M. A., Bacterial induction of beta interferon in mice is a function of the lipopolysaccharide component. Infect. Immun. 2000. 68: 16001607.
  • 67
    Cauwels, A., Frei, K., Sansano, S., Fearns, C., Ulevitch, R., Zimmerli, W. and Landmann, R., The origin and function of soluble CD14 in experimental bacterial meningitis. J. Immunol. 1999. 162: 47624772.
  • 68
    Levin, J. and Bang, F. B., Clottable protein in Limulus; its localization and kinetics of its coagulation by endotoxin. Thromb. Diath. Haemorrh. 1968. 19: 186197.
  • 69
    Moore, K. J., Andersson, L. P., Ingalls, R. R., Monks, B. G., Li, R., Arnaout, M. A., Golenbock, D. T. and Freeman, M. W., Divergent response to LPS and bacteria in CD14-deficient murine macrophages. J. Immunol. 2000. 165: 42724280.
  • 70
    Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970. 227: 680685.
  • 71
    Fomsgaard, A., Freudenberg, M. A. and Galanos, C., Modification of the silver staining technique to detect lipopolysaccharide in polyacrylamide gels. J. Clin. Microbiol. 1990. 28: 26272631.
  • 72
    Karasuyama, H. and Melchers, F., Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors. Eur. J. Immunol. 1988. 18: 97104.
  • 73
    Huber, M., Helgason, C. D., Damen, J. E., Liu, L., Humphries, R. K. and Krystal, G., The Src homology 2-containing inositol phosphatase (Ship) is the gatekeeper of mast cell degranulation. Proc. Natl. Acad. Sci. USA 1998. 95: 1133011335.
  • 74
    Freudenberg, M. A., Keppler, D. and Galanos, C., Requirement for lipopolysaccharide-responsive macrophages in galactosamine-induced sensitization to endotoxin. Infect. Immun. 1986. 51: 891895.
  • 75
    Aggarwal, B. B., Kohr, W. J., Hass, P. E., Moffat, B., Spencer, S. A., Henzel, W. J., Bringman, T. S. et al., Human tumor necrosis factor. Production, purification, and characterization. J. Biol. Chem. 1985. 260: 23452354.
  • 76
    Huber, M., Helgason, C. D., Scheid, M. P., Duronio, V., Humphries, R. K. and Krystal, G., Targeted disruption of SHIP leads to Steel factor-induced degranulation of mast cells. EMBO J. 1998. 17: 73117319.