SEARCH

SEARCH BY CITATION

  • 1
    Green, D. R. and Ferguson, T. A., The role of Fas ligand in immune privilege. Nat. Rev. Mol. Cell Biol. 2001. 2: 917924.
  • 2
    Ljunggren, H. G. and Karre, K., In search of the ‘missing self': MHC molecules and NK cell recognition. Immunol. Today 1990. 11: 237244.
  • 3
    Smith, H. R., Heusel, J. W., Mehta, I. K., Kim, S., Dorner, B. G., Naidenko, O. V., Iizuka, K. et al., Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. US 2002. 99: 88268831.
  • 4
    Arase, H., Mocarski, E. S., Campbell, A. E., Hill, A. B. and Lanier, L. L., Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 2002. 296: 13231326.
  • 5
    Steinle, A., Li, P., Morris, D. L., Groh, V., Lanier, L. L., Strong, R. K. and Spies, T., Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family. Immunogenetics 2001. 53: 279287.
  • 6
    Arase, H. and Lanier, L. L., Specific recognition of virus-infected cells by paired NK receptors. Rev. Med. Virol. 2004. 14: 8393.
  • 7
    Long, E. O., Tumor cell recognition by natural killer cells. Semin. Cancer Biol. 2002. 12: 5761.
  • 8
    Brown, G. D. and Gordon, S., Immune recognition. A new receptor for beta-glucans. Nature 2001. 413: 3637.
  • 9
    Ariizumi, K., Shen, G. L., Shikano, S., Xu, S., Ritter, R., 3rd, Kumamoto, T., Edelbaum, D. et al., Identification of a novel, dendritic cell-associated molecule, dectin-1, by subtractive cDNA cloning. J. Biol. Chem. 2000. 275: 2015720167.
  • 10
    Sobanov, Y., Bernreiter, A., Derdak, S., Mechtcheriakova, D., Schweighofer, B., Duchler, M., Kalthoff, F. and Hofer, E., A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur. J. Immunol. 2001. 31: 34933503.
  • 11
    Herre, J., Gordon, S. and Brown, G. D., Dectin-1 and its role in the recognition of beta-glucans by macrophages. Mol. Immunol. 2004. 40: 869876.
  • 12
    Mehta, J. L. and Li, D., Identification, regulation and function of a novel lectin-like oxidized low-density lipoprotein receptor. J. Am. Coll. Cardiol. 2002. 39: 14291435.
  • 13
    Colonna, M., Samaridis, J. and Angman, L., Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 2000. 30: 697704.
  • 14
    Marshall, A. S., Willment, J. A., Lin, H. H., Williams, D. L., Gordon, S. and Brown, G. D., Identification and characterization of a novel human myeloid inhibitory C-type lectin-like receptor (MICL) that is predominantly expressed on granulocytes and monocytes. J. Biol. Chem. 2004. 279: 1479214802.
  • 15
    Chen, C. H., Floyd, H., Olson, N. E., Magaletti, D., Li, C., Draves, K. and Clark, E. A., Dendritic-cell-associated C-type lectin 2 (DCAL-2) alters dendritic-cell maturation and cytokine production. Blood 2006. 107: 14591467.
  • 16
    Han, Y., Zhang, M., Li, N., Chen, T., Zhang, Y., Wan, T. and Cao, X., KLRL1, a novel killer cell lectinlike receptor, inhibits natural killer cell cytotoxicity. Blood 2004. 104: 28582866.
  • 17
    Bakker, A. B., van den Oudenrijn, S., Bakker, A. Q., Feller, N., van Meijer, M., Bia, J. A., Jongeneelen, M. A. et al., C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukaemia. Cancer Res. 2004. 64: 84438450.
  • 18
    Weil, G. J. and Chused, T. M., Eosinophil autofluorescence and its use in isolation and analysis of human eosinophils using flow microfluorometry. Blood 1981. 57: 10991104.
  • 19
    Geissmann, F., Jung, S. and Littman, D. R., Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003. 19: 7182.
  • 20
    Taylor, P. R., Martinez-Pomares, L., Stacey, M., Lin, H. H., Brown, G. D. and Gordon, S., Macrophage receptors and immune recognition. Annu. Rev. Immunol. 2005. 23: 901944.
  • 21
    Willment, J. A., Marshall, A. S., Reid, D. M., Williams, D. L., Wong, S. Y., Gordon, S. and Brown, G. D., The human beta-glucan receptor is widely expressed and functionally equivalent to murine Dectin-1 on primary cells. Eur. J. Immuno. 2005. 35: 15391547.
  • 22
    Xie, Q., Matsunaga, S., Niimi, S., Ogawa, S., Tokuyasu, K., Sakakibara, Y. and Machida, S., Human lectin-like oxidized low-density lipoprotein receptor-1 functions as a dimer in living cells. DNA Cell Biol. 2004. 23: 111117.
  • 23
    Yokota, K., Takashima, A., Bergstresser, P. R. and Ariizumi, K., Identification of a human homologue of the dendritic cell-associated C-type lectin-1, dectin-1. Gene 2001. 272: 5160.
  • 24
    Mason, L. H., Willette-Brown, J., Anderson, S. K., Alvord, W. G., Klabansky, R. L., Young, H. A. and Ortaldo, J. R., Receptor glycosylation regulates Ly-49 binding to MHC class I. J. Immunol. 2003. 171: 42354242.
  • 25
    Kataoka, H., Kume, N., Miyamoto, S., Minami, M., Murase, T., Sawamura, T., Masaki, T. et al., Biosynthesis and post-translational processing of lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). N-linked glycosylation affects cell-surface expression and ligand binding. J. Biol. Chem. 2000. 275: 65736579.
  • 26
    Saether, P. C., Westgaard, I. H., Flornes, L. M., Hoelsbrekken, S. E., Ryan, J. C., Fossum, S. and Dissen, E., Molecular cloning of KLRI1 and KLRI2, a novel pair of lectin-like natural killer-cell receptors with opposing signalling motifs. Immunogenetics 2005. 56: 833839.
  • 27
    Westgaard, I. H., Dissen, E., Torgersen, K. M., Lazetic, S., Lanier, L. L., Phillips, J. H. and Fossum, S., The lectin-like receptor KLRE1 inhibits natural killer cell cytotoxicity. J. Exp. Med. 2003. 197: 15511561.
  • 28
    Rebuck, J. W. and Crowley, J. H., A method of studying leukocytic functions in vivo. Ann. NY Acad. Sci. 1955. 59: 757805.
  • 29
    Senn, H., Holland, J. F. and Banerjee, T., Kinetic and comparative studies on localized leukocyte mobilization in normal man. J. Lab. Clin. Med. 1969. 74: 742756.
  • 30
    Mass, M. F., Dean, P. B., Weston, W. L. and Humbert, J. R., Leukocyte migration in vivo: a new method of study. J. Lab. Clin. Med. 1975. 86: 10401046.
  • 31
    Kiistala, U. and Mustakallio, K. K., In-vivo separation of epidermis by production of suction blisters. Lancet 1964. 41: 14441445.
  • 32
    Day, R. M., Harbord, M., Forbes, A. and Segal, A. W., Cantharidin blisters: a technique for investigating leukocyte trafficking and cytokine production at sites of inflammation in humans. J. Immunol. Methods 2001. 257: 213220.
  • 33
    Kiistala, U., Suction blister device for separation of viable epidermis from dermis. J. Invest. Dermatol. 1968. 50: 129137.
  • 34
    Alves Rosa, M. F., Vulcano, M., Minnucci, F. S., Di Gianni, P. D. and Isturiz, M. A., Inhibition of Fc gamma R-dependent functions by N-formylmethionylleucylphenylalanine in human neutrophils. Clin. Immunol. Immunopathol. 1997. 83: 147155.
  • 35
    Hofman, P., Piche, M., Far, D. F., Le Negrate, G., Selva, E., Landraud, L., Alliana-Schmid, A. et al., Increased Escherichia coli phagocytosis in neutrophils that have transmigrated across a cultured intestinal epithelium. Infect. Immun. 2000. 68: 449455.
  • 36
    Dransfield, I., Buckle, A. M., Savill, J. S., McDowall, A., Haslett, C. and Hogg, N., Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J. Immunol. 1994. 153: 12541263.
  • 37
    Passlick, B., Flieger, D. and Ziegler-Heitbrock, H. W., Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 1989. 74: 25272534.
  • 38
    Ziegler-Heitbrock, H. W., Fingerle, G., Strobel, M., Schraut, W., Stelter, F., Schutt, C., Passlick, B. and Pforte, A., The novel subset of CD14+/CD16+ blood monocytes exhibits features of tissue macrophages. Eur. J. Immunol. 1993. 23: 20532058.
  • 39
    Miller, L. J., Bainton, D. F., Borregaard, N. and Springer, T. A., Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J. Clin. Invest. 1987. 80: 535544.
  • 40
    Molad, Y., Haines, K. A., Anderson, D. C., Buyon, J. P. and Cronstein, B. N., Immunocomplexes stimulate different signalling events to chemoattractants in the neutrophil and regulate L-selectin and beta 2-integrin expression differently. Biochem. J. 1994. 299 (Pt. 3): 881887.
  • 41
    Mosser, D. M., The many faces of macrophage activation. J. Leukoc. Biol. 2003. 73: 209212.
  • 42
    Barrionuevo, P., Beigier-Bompadre, M., Fernandez, G. C., Gomez, S., Alves-Rosa, M. F., Palermo, M. S. and Isturiz, M. A., Immune complex-FcgammaR interaction modulates monocyte/macrophage molecules involved in inflammation and immune response. Clin. Exp. Immunol. 2003. 133: 200207.
  • 43
    Haller, D., Serrant, P., Peruisseau, G., Bode, C., Hammes, W. P., Schiffrin, E. and Blum, S., IL-10 producing CD14low monocytes inhibit lymphocyte-dependent activation of intestinal epithelial cells by commensal bacteria. Microbiol. Immunol. 2002. 46: 195205.
  • 44
    Landmann, R., Wesp, M. and Obrecht, J. P., Cytokine regulation of the myeloid glycoprotein CD14. Pathobiology 1991. 59: 131135.
  • 45
    Nishimura, H., Nose, M., Hiai, H., Minato, N. and Honjo, T., Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999. 11: 141151.
  • 46
    Katz, H. R., Inhibitory receptors and allergy. Curr. Opin. Immunol. 2002. 14: 698704.
  • 47
    Poggi, A., Pellegatta, F., Leone, B. E., Moretta, L. and Zocchi, M. R., Engagement of the leukocyte-associated Ig-like receptor-1 induces programmed cell death and prevents NF-kappaB nuclear translocation in human myeloid leukemias. Eur. J. Immunol. 2000. 30: 27512758.
  • 48
    Nutku, E., Aizawa, H., Hudson, S. A. and Bochner, B. S., Ligation of Siglec-8: a selective mechanism for induction of human eosinophil apoptosis. Blood 2003. 101: 50145020.
  • 49
    Vitale, C., Romagnani, C., Puccetti, A., Olive, D., Costello, R., Chiossone, L., Pitto, A. et al., Surface expression and function of p75/AIRM-1 or CD33 in acute myeloid leukemias: engagement of CD33 induces apoptosis of leukemic cells. Proc. Natl. Acad. Sci. USA 2001. 98: 57645769.
  • 50
    Taylor, P. R., Zamze, S., Stillion, R. J., Wong, S. Y., Gordon, S. and Martinez-Pomares, L., Development of a specific system for targeting protein to metallophilic macrophages. Proc. Natl. Acad. Sci. USA 2004. 101: 19631968.
  • 51
    Coligan, J. E., Kruisbeek, A. M., Margulies, D. H., Shevach, E. M. and Strober, W., (Eds.) Current Protocols in Immunology. John Wiley & Sons. Indianapolis, 1996.
  • 52
    Kohler, G. and Milstein, C., Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975. 256: 495497.
  • 53
    Dzionek, A., Fuchs, A., Schmidt, P., Cremer, S., Zysk, M., Miltenyi, S., Buck, D. W. and Schmitz, J., BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J. Immunol. 2000. 165: 60376046.