SEARCH

SEARCH BY CITATION

  • 1
    Mackay, F., Schneider, P., Rennert, P. and Browning, J., BAFF AND APRIL: a tutorial on B cell survival. Annu. Rev. Immunol. 2003. 21: 231264.
  • 2
    Mackay, F. and Tangye, S. G., The role of the BAFF/APRIL system in B cell homeostasis and lymphoid cancers. Curr. Opin. Pharmacol. 2004. 4: 347354.
  • 3
    Mackay, F. and Ambrose, C., The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev. 2003. 14: 311324.
  • 4
    Mackay, F. and Browning, J. L., BAFF: a fundamental survival factor for B cells. Nat. Rev. Immunol. 2002. 2: 465475.
  • 5
    Schiemann, B., Gommerman, J. L., Vora, K., Cachero, T. G., Shulga-Morskaya, S., Dobles, M., Frew, E. et al., An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 2001. 293: 21112114.
  • 6
    Batten, M., Groom, J., Cachero, T. G., Qian, F., Schneider, P., Tschopp, J., Browning, J. L. et al., BAFF mediates survival of peripheral immature B lymphocytes. J. Exp. Med. 2000. 192: 14531466.
  • 7
    Gross, J. A., Dillon, S. R., Mudri, S., Johnston, J., Littau, A., Roque, R., Rixon, M. et al., TACI-Ig neutralizes molecules critical for B cell development and autoimmune disease. impaired B cell maturation in mice lacking BLyS. Immunity 2001. 15: 289302.
  • 8
    Castigli, E., Wilson, S. A., Scott, S., Dedeoglu, F., Xu, S., Lam, K. P., Bram, R. J. et al., TACI and BAFF-R mediate isotype switching in B cells. J. Exp. Med. 2005. 201: 3539.
  • 9
    Litinskiy, M. B., Nardelli, B., Hilbert, D. M., He, B., Schaffer, A., Casali, P. and Cerutti, A., DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat. Immunol. 2002. 3: 822829.
  • 10
    Mackay, F., Woodcock, S. A., Lawton, P., Ambrose, C., Baetscher, M., Schneider, P., Tschopp, J. et al., Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 1999. 190: 16971710.
  • 11
    Groom, J., Kalled, S. L., Cutler, A. H., Olson, C., Woodcock, S. A., Schneider, P., Tschopp, J. et al., Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J. Clin. Invest. 2002. 109: 5968.
  • 12
    Thien, M., Phan, T. G., Gardam, S., Amesbury, M., Basten, A., Mackay, F. and Brink, R., Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004. 20: 785798.
  • 13
    Wang, J., Anders, R. A., Wu, Q., Peng, D., Cho, J. H., Sun, Y., Karaliukas, R. et al., Dysregulated LIGHT expression on T cells mediates intestinal inflammation and contributes to IgA nephropathy. J. Clin. Invest. 2004. 113: 826835.
  • 14
    Sutherland, A. P., Ng, L. G., Fletcher, C. A., Shum, B., Newton, R. A., Grey, S. T., Rolph, M. S. et al., BAFF augments certain Th1-associated inflammatory responses. J. Immunol. 2005. 174: 55375544.
  • 15
    Lopes-Carvalho, T. and Kearney, J. F., Development and selection of marginal zone B cells. Immunol. Rev. 2004. 197: 192205.
  • 16
    Pillai, S., Cariappa, A. and Moran, S. T., Marginal zone B cells. Annu. Rev. Immunol. 2005. 23: 161196.
  • 17
    Li, Y., Li, H., Ni, D. and Weigert, M., Anti-DNA B cells in MRL/lpr mice show altered differentiation and editing pattern. J. Exp. Med. 2002. 196: 15431552.
  • 18
    Chen, X., Martin, F., Forbush, K. A., Perlmutter, R. M. and Kearney, J. F., Evidence for selection of a population of multi-reactive B cells into the splenic marginal zone. Int. Immunol. 1997. 9: 2741.
  • 19
    Grimaldi, C. M., Michael, D. J. and Diamond, B., Cutting edge: expansion and activation of a population of autoreactive marginal zone B cells in a model of estrogen-induced lupus. J. Immunol 2001. 167: 18861890.
  • 20
    Peeva, E., Michael, D., Cleary, J., Rice, J., Chen, X. and Diamond, B., Prolactin modulates the naive B cell repertoire. J. Clin. Invest. 2003. 111: 275283.
  • 21
    Gommerman, J. L. and Browning, J. L., Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat. Rev. Immunol. 2003. 3: 642655.
  • 22
    Ware, C. F., Network communications: lymphotoxins, LIGHT, and TNF. Annu. Rev. Immunol. 2005. 23: 787819.
  • 23
    Lu, T. T. and Cyster, J. G., Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 2002. 297: 409412.
  • 24
    Silva-Santos, B., Pennington, D. J. and Hayday, A. C., Lymphotoxin-mediated regulation of gammadelta cell differentiation by alphabeta T cell progenitors. Science 2005. 307: 925928.
  • 25
    Koni, P. A., Sacca, R., Lawton, P., Browning, J. L., Ruddle, N. H. and Flavell, R. A., Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Immunity 1997. 6: 491500.
  • 26
    Dejardin, E., Droin, N. M., Delhase, M., Haas, E., Cao, Y., Makris, C., Li, Z. W. et al., The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 2002. 17: 525535.
  • 27
    Tardivel, A., Tinel, A., Lens, S., Steiner, Q. G., Sauberli, E., Wilson, A., Mackay, F. et al., The anti-apoptotic factor Bcl-2 can functionally substitute for the B cell survival but not for the marginal zone B cell differentiation activity of BAFF. Eur. J. Immunol. 2004. 34: 509518.
  • 28
    Loder, F., Mutschler, B., Ray, R. J., Paige, C. J., Sideras, P., Torres, R., Lamers, M. C. et al., B cell development in the spleen takes place in discrete steps and is determined by the quality of B cell receptor-derived signals. J. Exp. Med 1999. 190: 7589.
  • 29
    Allman, D., Srivastava, B. and Lindsley, R. C., Alternative routes to maturity: branch points and pathways for generating follicular and marginal zone B cells. Immunol. Rev. 2004. 197: 147160.
  • 30
    Srivastava, B., Quinn, W. J., 3rd, Hazard, K., Erikson, J. and Allman, D., Characterization of marginal zone B cell precursors. J. Exp. Med. 2005. 202: 12251234.
  • 31
    Allman, D., Lindsley, R. C., DeMuth, W., Rudd, K., Shinton, S. A. and Hardy, R. R., Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J. Immunol. 2001. 167: 68346840.
  • 32
    Attanavanich, K. and Kearney, J. F., Marginal zone, but not follicular B cells, are potent activators of naive CD4 T cells. J. Immunol. 2004. 172: 803811.
  • 33
    Wu, Q., Wang, Y., Wang, J., Hedgeman, E. O., Browning, J. L. and Fu, Y. X., The requirement of membrane lymphotoxin for the presence of dendritic cells in lymphoid tissues. J. Exp. Med. 1999. 190: 629638.
  • 34
    Kang, H. S., Chin, R. K., Wang, Y., Yu, P., Wang, J., Newell, K. A. and Fu, Y. X., Signaling via LTbetaR on the lamina propria stromal cells of the gut is required for IgA production. Nat. Immunol. 2002. 3: 576582.
  • 35
    Khare, S. D., Sarosi, I., Xia, X. Z., McCabe, S., Miner, K., Solovyev, I., Hawkins, N. et al., Severe B cell hyperplasia and autoimmune disease in TALL-1 transgenic mice. Proc. Natl. Acad. Sci. USA 2000. 97: 33703375.
  • 36
    Fargarasan, S. and Honjo, T., Intestinal IgA synthesis: regulation of front-line body defences. Nat. Rev. Immunol. 2003. 3: 6372.
  • 37
    Berland, R. and Wortis, H. H., Origins and functions of B-1 cells with notes on the role of CD5. Annu. Rev. Immunol. 2002. 20: 253300.
  • 38
    Mackay, F., Sierro, F., Grey, S. T. and Gordon, T. P., The BAFF/APRIL system: an important player in systemic rheumatic diseases. Curr. Dir. Autoimmun. 2005. 8: 243265.
  • 39
    Fagarasan, S. and Honjo, T., T-Independent immune response: new aspects of B cell biology. Science 2000. 290: 8992.
  • 40
    Wither, J. E., Loh, C., Lajoie, G., Heinrichs, S., Cai, Y. C., Bonventi, G. and MacLeod, R., Colocalization of expansion of the splenic marginal zone population with abnormal B cell activation and autoantibody production in B6 mice with an introgressed New Zealand Black chromosome 13 interval. J. Immunol. 2005. 175: 43094319.
  • 41
    Segundo, C., Rodriguez, C., Garcia-Poley, A., Aguilar, M., Gavilan, I., Bellas, C. and Brieva, J. A., Thyroid-infiltrating B lymphocytes in Graves’ disease are related to marginal zone and memory B cell compartments. Thyroid 2001. 11: 525530.
  • 42
    Schuster, H., Martin, T., Marcellin, L., Garaud, J. C., Pasquali, J. L. and Korganow, A. S., Expansion of marginal zone B cells is not sufficient for the development of renal disease in NZBxNZW F1 mice. Lupus 2002. 11: 277286.
  • 43
    Martin, F. and Kearney, J. F., Marginal-zone B cells. Nat. Rev. Immunol. 2002. 2: 323335.
  • 44
    Ngo, V. N., Korner, H., Gunn, M. D., Schmidt, K. N., Riminton, D. S., Cooper, M. D., Browning, J. L. et al., Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 1999. 189: 403412.
  • 45
    Batten, M., Fletcher, C., Ng, L. G., Groom, J., Wheway, J., Laabi, Y., Xin, X. et al., TNF deficiency fails to protect BAFF transgenic mice against autoimmunity and reveals a predisposition to B cell lymphoma. J. Immunol. 2004. 172: 812822.
  • 46
    Fu, Y. X. and Chaplin, D. D., Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 1999. 17: 399433.
  • 47
    Hsu, B. L., Harless, S. M., Lindsley, R. C., Hilbert, D. M. and Cancro, M. P., Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J. Immunol. 2002. 168: 59935996.
  • 48
    Fagarasan, S., Shinkura, R., Kamata, T., Nogaki, F., Ikuta, K. and Honjo, T., Mechanism of B1 cell differentiation and migration in GALT. Curr. Top. Microbiol. Immunol. 2000. 252: 221229.
  • 49
    Gross, J. A., Johnston, J., Mudri, S., Enselman, R., Dillon, S. R., Madden, K., Xu, W. et al., TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature 2000. 404: 995999.
  • 50
    Hsu, S. I., The molecular pathogenesis and experimental therapy of IgA nephropathy: recent advances and future directions. Curr. Mol. Med. 2001. 1: 183196.
  • 51
    Bohnhorst, J. O., Thoen, J. E., Natvig, J. B. and Thompson, K. M., Significantly depressed percentage of CD27+ (memory) B cells among peripheral blood B cells in patients with primary Sjogren's syndrome. Scand. J. Immunol. 2001. 54: 421427.
  • 52
    Mariette, X., Roux, S., Zhang, J., Bengoufa, D., Lavie, F., Zhou, T. and Kimberly, R., The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren's syndrome. Ann. Rheum. Dis. 2003. 62: 168171.
  • 53
    Ochoa, E. R., Harris, N. L. and Pilch, B. Z., Marginal zone B-cell lymphoma of the salivary gland arising in chronic sclerosing sialadenitis (Kuttner tumor). Am. J. Surg. Pathol. 2001. 25: 15461550.
  • 54
    deVos, T. and Dick, T. A., A rapid method to determine the isotype and specificity of coproantibodies in mice infected with Trichinella or fed cholera toxin. J. Immunol. Methods 1991. 141: 285288.
  • 55
    Browning, J. L., Dougas, I., Ngam-ek, A., Bourdon, P. R., Ehrenfels, B. N., Miatkowski, K., Zafari, M. et al., Characterization of surface lymphotoxin forms. Use of specific monoclonal antibodies and soluble receptors. J. Immunol. 1995. 154: 3346.