SEARCH

SEARCH BY CITATION

  • 1
    Steinman, R. M. and Dhodapkar, M., Active immunization against cancer with dendritic cells: The near future. Int. J. Cancer 2001. 94: 459473.
  • 2
    Davis, I. D., Jefford, M., Parente, P. and Cebon, J., Rational approaches to human cancer immunotherapy. J. Leukoc. Biol. 2003. 73: 329.
  • 3
    Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y., Pulendran, B. and Palucka, K., Immunobiology of dendritic cells. Annu. Rev. Immunol. 2000. 18: 767811.
  • 4
    Shortman, K. and Liu, Y. J., Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2002. 2: 151161.
  • 5
    Romani, N., Gruner, S., Brang, D., Kampgen, E., Lenz, A., Trockenbacher, B., Konwalinka, G. et al., Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 1994. 180: 8393.
  • 6
    Sallusto, F. and Lanzavecchia, A., Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994. 179: 11091118.
  • 7
    Paquette, R. L., Hsu, N. C., Kiertscher, S. M., Park, A. N., Tran, L., Roth, M. D. and Glaspy, J. A., Interferon-alpha and granulocyte-macrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. J. Leukoc. Biol. 1998. 64: 358367.
  • 8
    Luft, T., Pang, K. C., Thomas, E., Hertzog, P., Hart, D. N., Trapani, J. and Cebon, J., Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol. 1998. 161: 19471953.
  • 9
    Santini, S. M., Lapenta, C., Logozzi, M., Parlato, S., Spada, M., Di Pucchio, T. and Belardelli, F., Type I interferon as a powerful adjuvant for monocyte-derived dendritic cell development and activity in vitro and in Hu-PBL-SCID mice. J. Exp. Med. 2000. 191: 17771788.
  • 10
    Chomarat, P., Dantin, C., Bennett, L., Banchereau, J. and Palucka, A. K., TNF skews monocyte differentiation from macrophages to dendritic cells. J. Immunol. 2003. 171: 22622269.
  • 11
    Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Durand, I., Cella, M., Lanzavecchia, A. and Banchereau, J., CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 1997. 90: 14581470.
  • 12
    Banchereau, J., Palucka, A. K., Dhodapkar, M., Burkeholder, S., Taquet, N., Rolland, A., Taquet, S. et al., Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res. 2001. 61: 64516458.
  • 13
    Paczesny, S., Banchereau, J., Wittkowski, K. M., Saracino, G., Fay, J. and Palucka, A. K., Expansion of melanoma-specific cytolytic CD8+ T cell precursors in patients with metastatic melanoma vaccinated with CD34+ progenitor-derived dendritic cells. J. Exp. Med. 2004. 199: 15031511.
  • 14
    Mohamadzadeh, M., Berard, F., Essert, G., Chalouni, C., Pulendran, B., Davoust, J., Bridges, G. et al., Interleukin 15 skews monocyte differentiation into dendritic cells with features of Langerhans cells. J. Exp. Med. 2001. 194: 10131020.
  • 15
    Dubois, S., Mariner, J., Waldmann, T. A. and Tagaya, Y., IL-15Ralpha recycles and presents IL-15 in trans to neighboring cells. Immunity 2002. 17: 537547.
  • 16
    Musso, T., Calosso, L., Zucca, M., Millesimo, M., Ravarino, D., Giovarelli, M., Malavasi, F. et al., Human monocytes constitutively express membrane-bound, biologically active, and interferon-gamma-upregulated interleukin-15. Blood 1999. 93: 35313539.
  • 17
    Neely, G. G., Epelman, S., Ma, L. L., Colarusso, P., Howlett, C. J., Amankwah, E. K., McIntyre, A. C. et al., Monocyte surface-bound IL-15 can function as an activating receptor and participate in reverse signaling. J. Immunol. 2004. 172: 42254234.
  • 18
    Alves, N. L., Hooibrink, B., Arosa, F. A. and van Lier, R. A., IL-15 induces antigen-independent expansion and differentiation of human naive CD8+ T cells in vitro. Blood 2003. 102: 25412546.
  • 19
    Seder, R. A., Grabstein, K. H., Berzofsky, J. A. and McDyer, J. F., Cytokine interactions in human immunodeficiency virus-infected individuals: Roles of interleukin (IL)-2, IL-12, and IL-15. J. Exp. Med. 1995. 182: 10671077.
  • 20
    Castelli, J., Thomas, E. K., Gilliet, M., Liu, Y. J. and Levy, J. A., Mature dendritic cells can enhance CD8+ cell noncytotoxic anti-HIV responses: The role of IL-15. Blood 2004. 103: 26992704.
  • 21
    Ferlazzo, G., Pack, M., Thomas, D., Paludan, C., Schmid, D., Strowig, T., Bougras, G. et al., Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc. Natl. Acad. Sci. USA 2004. 101: 1660616611.
  • 22
    Takata, H., Tomiyama, H., Fujiwara, M., Kobayashi, N. and Takiguchi, M., Cutting Edge: Expression of chemokine receptor CXCR1 on human effector CD8+ T cells. J. Immunol. 2004. 173: 22312235.
  • 23
    Hess, C., Means, T. K., Autissier, P., Woodberry, T., Altfeld, M., Addo, M. M., Frahm, N. et al., IL-8 responsiveness defines a subset of CD8 T cells poised to kill. Blood 2004. 104: 34633471.
  • 24
    Pardoll, D., Does the immune system see tumors as foreign or self? Annu. Rev. Immunol. 2003. 21: 807839.
  • 25
    Medema, J. P., de Jong, J., Peltenburg, L. T., Verdegaal, E. M., Gorter, A., Bres, S. A., Franken, K. L. et al., Blockade of the Granzyme B/Perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc. Natl. Acad. Sci. USA 2001. 98: 1151511520.
  • 26
    Irmler, M., Thome, M., Hahne, M., Schneider, P., Hofmann, K., Steiner, V., Bodmer, J. L. et al., Inhibition of death receptor signals by cellular FLIP. Nature 1997. 388: 190195.
  • 27
    Bennett, F., Luxenberg, D., Ling, V., Wang, I. M., Marquette, K., Lowe, D., Khan, N. et al., Program death-1 engagement upon TCR activation has distinct effects on costimulation and cytokine-driven proliferation: Attenuation of ICOS, IL-4, and IL-21, but not CD28, IL-7, and IL-15 responses. J. Immunol. 2003. 170: 711718.
  • 28
    McMahon, C. W. and Raulet, D. H., Expression and function of NK cell receptors in CD8+ T cells. Curr. Opin. Immunol. 2001. 13: 465470.
  • 29
    Oh, S., Berzofsky, J. A., Burke, D. S., Waldmann, T. A. and Perera, L. P., Coadministration of HIV vaccine vectors with vaccinia viruses expressing IL-15 but not IL-2 induces long-lasting cellular immunity. Proc. Natl. Acad. Sci. USA 2003. 100: 33923397.
  • 30
    Brandt, K., Bulfone-Paus, S., Foster, D. C. and Ruckert, R., Interleukin-21 inhibits dendritic cell activation and maturation. Blood 2003. 102: 40904098.
  • 31
    Pulendran, B., Dillon, S., Joseph, C., Curiel, T., Banchereau, J. and Mohamadzadeh, M., Dendritic cells generated in the presence of GM-CSF plus IL-15 prime potent CD8+ Tc1 responses in vivo. Eur. J. Immunol. 2004. 34: 6673.
  • 32
    Feau, S., Facchinetti, V., Granucci, F., Citterio, S., Jarrossay, D., Seresini, S., Protti, M. P. et al., Dendritic cell-derived IL-2 production is regulated by IL-15 in humans and in mice. Blood 2005. 105: 697702.